4 resultados para Crust of neutron stars
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Dwarf galaxies often experience gravitational interactions from more massive companions. These interactions can deform galaxies, turn star formation on or off, or give rise to mass loss phenomena. In this thesis work we propose to study, through N-body simulations, the stellar mass loss suffered by the dwarf spheroid galaxy (dSph) Fornax orbiting in the Milky Way gravitational potential. Which is a key phenomenon to explain the mass budget problem: the Fornax globular clusters together have a stellar mass comparable to that of Fornax itself. If we look at the stellar populations which they are made of and we apply the scenarios of stellar population formation we find that, originally, they must have been >= 5 times more massive. For this reason, they must have lost or ejected stars through dynamic interactions. However, as presented in Larsen et al (2012), field stars alone are not sufficient to explain this scenario. We may assume that some of those stars fell into Fornax, and later were stripped by Milky Way. In order to study this solution we built several illustrative single component simulations, with a tabulated density model using the P07ecc orbit studied from Battaglia et al (2015). To divide the single component into stellar and dark matter components we have defined a posterior the probability function P(E), where E is the initial energy distribution of the particles. By associating each particle with a fraction of stellar mass and dark matter. In this way we built stellar density profiles without repeating simulations. We applied the method to Fornax using the profile density tables obtained in Pascale et al (2018) as observational constraints and to build the model. The results confirm the results previously obtained with less flexible models by Battaglia et al (2015). They show a stellar mass loss < 4% within 1.6 kpc and negligible within 3 kpc, too small to solve the mass budget problem.
Resumo:
In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.
Resumo:
Il presente lavoro di tesi, sviluppato nell’arco di sei mesi presso l’Institut Supérieur Industriel de Bruxelles (ISIB) in collaborazione con Ion Beam Application Group (IBA, Louvain la Neuve), ha come principale soggetto lo studio della risposta del rem meter WENDI-2 commercializzato da Thermo Scientific. Lo studio si è basato principalmente sull’uso del codice Monte Carlo MCNPX 2.5.0, simulando la risposta del detector sia in caso di campi di radiazione neutronica monoenergetici sia in corrispondenza di spettri neutronici continui. La prima fase è stata dedicata alla modellizzazione MCNPX del rem counter, consentendo così la valutazione della sua funzione risposta. Questa è stata ricostruita interpolando 93 punti, ciascuno calcolato in corrispondenza di un singolo valore di energia di una sorgente puntiforme, compreso tra 1 meV e 5 GeV. In tal caso è stata rilevata un’ottima corrispondenza tra i risultati ottenuti e quelli riportati nella letteratura scientifica esistente. In una seconda fase, al fine di ottenere informazioni sulla risposta di WENDI II in corrispondenza di campi complessi di radiazione, simulazioni MCNPX sono state realizzate riproducendo un ambiente di lavoro esistente presso la sede IBA di Louvain la Neuve: la risposta del detector è stata valutata in corrispondenza di 9 diverse posizioni all’interno di un bunker contenente un ciclotrone PET (18 MeV H-), implicando la rilevazione di campi di radiazione neutronica continui ed estesi dalle energie termiche fino a 18 MeV. I risultati ottenuti sono stati infine comparati con i valori di dose ambiente equivalente calcolata nelle stesse condizioni di irraggiamento.
Resumo:
Durante il Long Shutdown 1 di LHC sono stati cambiati i fotomoltiplicatori del rivelatore di luminosità LUCID di ATLAS. I due modelli candidati per la sostituzione sono stati sottoposti a test di resistenza alla radiazione di gamma e neutroni. In questa tesi si riportano i risultati delle misure di dark current, risposta spettrale, guadagno relativo e assoluto, prima e dopo l’irraggiamento con neutroni. L’unica differenza di rilievo riguarda un aumento della dark current, gli altri parametri non presentano variazioni entro la precisione delle misure. Non ci sono differenze sostanziali tra i due modelli per quanto riguarda la resistenza alle radiazioni.