3 resultados para Corallium
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.
Resumo:
In order to support the conservation of the Mediterranean octocorals improvements on information regarding their taxonomic units and phylogenetic relationships are strongly needed. In the present thesis work, phylogenetic analyses based on the mitochondrial mtMSH and 16S genes were performed including 15 Mediterranean octocorals species on the 56 recognized to date. Moreover, an extended datasets with Atlanto/Pacific congeners Octocorallia species was implemented to clarify their phylogenetic relationships and estimate the divergence times of the Mediterranean species. Results indicated that: 1) there are similarity and differences among molecular and morphological traits depending on the taxonomical level considered; 2) the molecular phylogeny of the Mediterranean octocorals retrace the previous relationships based on wide octocorals analyses; and 3) the divergence time among Mediterranean and Atlanto/Pacific species varies depending on analysed taxa. At higher taxonomic level, the Mediterranean trees supported the division of the Mediterranean Octocorallia into one major clade (Alcyoniina-Holaxonia) plus two unresolved branch including the single species available of Scleraxonia and Stolonifera respectively. This topology was better supported including the Atlanto/Pacific congeners species. The molecular evidence suggested that Alcyonium palmatum and Corallium rubrum species are the youngest with a divergence time estimated around 4 MYA. Particularly, C. rubrum results were in agreement with the hypothesis that recent orogenesis process of the Mediterranean Sea promoted the allopatric speciation of this specie. Increasing the sample design and implementing the emerging next-generation genomic-sequencing technologies, further studies would be able to improve the understanding of the Mediterranean octocorals phylogenetic relationships and evolution.