3 resultados para Coral Reef Fishes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.
Resumo:
Indo-Pacific region encompasses about 75% of world's coral reefs, but hard coral cover in this region experienced a 32% region-wide decline since 1970s. This great change is primarily ascribable to natural and anthropogenic pressures, including climate change and human activities effects. Coral reef conservation requires management strategies oriented to maintain their diversity and the capacity to provide ecosystem goods and services. Coral reef resilience, i.e. the capacity to recover after disturbances, is critical to their long-term persistence. The aims of the present study were to design and to test field experiments intended to measure changes in recruitment processes, as a fundamental aspect of the coral reef resilience. Recruitment experiments, using artificial panels suspended in the water column, were carried out in two Indo-Pacific locations affected by different disturbances: a new mine in Bangka Island (Indonesia), and the increased sedimentation due to coastal dynamics in Vavvaru Island (Maldives). One (or more) putatively disturbed site(s) was selected to be tested against 3 randomly selected control sites. Panels’ arrangement simulates 2 proximities to living corals, i.e. the sources of propagules: few centimetres and 2 meters over. Panels were deployed simultaneously at each site and left submerged for about five months. Recruits were identified to the lowest possible taxonomic level and recruited assemblages were analysed in terms of percent cover. In general it was not possible to detect significant differences between the benthic assemblages recruited in disturbed and control sites. The high variability observed in recruits assemblages structure among control sites may be so large to mask the possible disturbance effects. Only few taxa showed possible effects of the disturb they undergo. The field tests have highlighted strengths and weaknesses of the proposed approach and, based on these results, some possible improvements were suggested.
Resumo:
Survival during the early life stages of marine species, including nearshore temperate reef fishes, is typically very low, and small changes in mortality rates, due to physiological and environmental conditions, can have marked effects on survival of a cohort and, on a larger scale, on the success of a recruitment season. Moreover, trade offs between larval growth and accumulation of energetic resources prior to settlement are likely to influence growth and survival until this critical period and afterwards. Rockfish recruitment rates are notoriously variable between years and across geographic locations. Monitoring of rates of onshore delivery of pelagic juveniles (defined here as settlement) of two species of nearshore rockfishes, Sebastes caurinus and Sebastes carnatus, was done between 2003-2009 years using artificial collectors placed at San Miguel and Santa Cruz Island, off Southern California coast. I investigated spatiotemporal variation in settlement rate, lipid content, pelagic larval duration and larval growth of the newly settled fishes; I assessed relationships between birth date, larval growth, early life-history characteristics and lipid content at settlement, considering also interspecific differences; finally, I attempt to relate interannual patterns of settlement and of early life history traits to easily accessible, local and regional indices of ocean conditions including in situ ocean temperature and regional upwelling, sea surface temperature (SST) and Chlorophyll-a (Chl-a) concentration. Spatial variations appeared to be of low relevance, while significant interannual differences were detected in settlement rate, pelagic larval duration and larval growth. The amount of lipid content of the newly settled fishes was highly variable in space and time, but did not differ between the two species and did not show any relationships with early life history traits, indicating that no trade off involved these physiological processes or they were masked by high individual variability in different periods of larval life. Significant interspecific differences were found in the timing of parturition and settlement and in larval growth rates, with S. carnatus growing faster and breeding and settling later than S. caurinus. The two species exhibited also different patterns of correlations between larval growth rates and larval duration. S. carnatus larval duration was longer when the growth in the first two weeks post-hatch was faster, while S. caurinus had a shorter larval duration when grew fast in the middle and in the end of larval life, suggesting different larval strategies. Fishes with longer larval durations were longer in size at settlement and exhibited longer planktonic phase in periods of favourable environmental conditions. Ocean conditions had a low explanatory power for interannual variation in early life history traits, but a very high explanatory power for settlement fluctuations, with regional upwelling strength being the principal indicator. Nonetheless, interannual variability in larval duration and growth were related to great phenological changes in upwelling happened during the period of this study and that caused negative consequences at all trophic levels along the California coast. Despite the low explanatory power of the environmental variables used in this study on the variation of larval biological traits, environmental processes were differently related with early life history characteristics analyzed to species, indicating possible species-specific susceptibility to ocean conditions and local environmental adaptation, which should be further investigated. These results have implications for understanding the processes influencing larval and juvenile survival, and consequently recruitment variability, which may be dependent on biological characteristics and environmental conditions.