4 resultados para Coral Colour

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indo-Pacific region encompasses about 75% of world's coral reefs, but hard coral cover in this region experienced a 32% region-wide decline since 1970s. This great change is primarily ascribable to natural and anthropogenic pressures, including climate change and human activities effects. Coral reef conservation requires management strategies oriented to maintain their diversity and the capacity to provide ecosystem goods and services. Coral reef resilience, i.e. the capacity to recover after disturbances, is critical to their long-term persistence. The aims of the present study were to design and to test field experiments intended to measure changes in recruitment processes, as a fundamental aspect of the coral reef resilience. Recruitment experiments, using artificial panels suspended in the water column, were carried out in two Indo-Pacific locations affected by different disturbances: a new mine in Bangka Island (Indonesia), and the increased sedimentation due to coastal dynamics in Vavvaru Island (Maldives). One (or more) putatively disturbed site(s) was selected to be tested against 3 randomly selected control sites. Panels’ arrangement simulates 2 proximities to living corals, i.e. the sources of propagules: few centimetres and 2 meters over. Panels were deployed simultaneously at each site and left submerged for about five months. Recruits were identified to the lowest possible taxonomic level and recruited assemblages were analysed in terms of percent cover. In general it was not possible to detect significant differences between the benthic assemblages recruited in disturbed and control sites. The high variability observed in recruits assemblages structure among control sites may be so large to mask the possible disturbance effects. Only few taxa showed possible effects of the disturb they undergo. The field tests have highlighted strengths and weaknesses of the proposed approach and, based on these results, some possible improvements were suggested.