3 resultados para Coprates rise
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The present thesis analyses the effects of the enrichment of the soil with fertilizer and sea level rise (SLR) on salt marsh vegetation. We simulated different conditions of the salt marshes under current and projected sea level rise. These habitats are colonised by various types of plants, we focused on species belonging to the genus Spartina. This plant seems to be particularly sensitive to eutrophication due to human activities, as experiments have documented a loss of habitat associated with altered nutrient conditions. We manipulated experimentally the types of sediment, the concentration of nutrients and sea level rise. We wanted to test whether eutrophication can affect the aboveground/belowground growth of the vegetation, and indirectly the erosion of the sediment, with potentially interacting effects with soil type and SLR in affecting the loss of the habitats and species. The study lasted from July to October. The data were analysed using Permanova. The results showed that the plants were placed in growth spiked sediment different from those raised in the untreated sediment. Furthermore, the sediment underwent a level of erosion differently depending on the growth of plants and the condition they were in the pots, current or future sea levers. These results suggest that the total salt marsh habitat is very sensitive to changes caused by human activities, and that excessive eutrophication, combined with SLR will likely facilitate further loss of salt marsh vegetation.
Resumo:
Within this master thesis, various aspects related to the issue of sustainability in the food sector were addressed, focusing on the greenhouse gas emissions derived from livestock production. The increment in population number and wealth is directly related to the growing demand for meat products, which is, in turn, related to an increase in greenhouse gas emissions. Consumers are becoming more and more aware of these environmental issues and, therefore, sustainability factors are becoming even more relevant also from the environmental point of view. A very useful tool in this field is Response-Inducing Sustainability Evaluation (RISE), a software that allows you to determine the sustainability of a farm under many aspects, like energy consumption, livestock management and soil use. The RISE software processes the information obtained through a questionnaire submitted by the farmer, in which 10 different areas of sustainability in the farm are covered. For each theme, the results are expressed clearly with a score that goes from 0 to 100. The experimentation discussed in this work included two different projects, one regarding a dairy farm and the other regarding a poultry farm. The first one was conducted on a dairy farm in Germany and the results allowed to highlight the weakest areas of the farm on which recommendations were given for ecological improvement. The second project was conducted on a chicken broiler farm in Italy, on an experimental basis since it was the first time that the software was applied to poultry. The results pointed out the aspects that can be improved in the RISE software in order to make it more suitable for future poultry studies.
Resumo:
Estimates of global sea-level change rates based on observations from Tide Gauges (TGs) show a long-term global mean sea-level rise (GMSLR) of 1÷2 mm/yr for the 20th century. The considerable scatter in these estimates is mainly attributable to the uneven distribution of the TG sites and to several physical phenomena that cause local sea level to deviate from the global mean, or to affect the TG record through land subsidence or uplift. The main cause of vertical ground motion on a regional space scale is the response of the Earth to past ice loads, called Glacial Isostatic Adjustment (GIA), which is often modelled and corrected for. In this work, a simple average approach was used to revisit two past estimates based on small sets of long, high-quality TG records in view of the longer record available, employing a newer GIA model (ICE-6G) from Peltier et al. [2015]. The value of GMSLR obtained from both sets is (1.5±0.4) mm/yr. In addition, a much larger set of TGs was used to estimate the contemporary (post 1993) GMSLR using satellite estimates from Cazenave et al. [2018] as a benchmark, in an attempt to understand how a simple average approach could perform for larger sets. The resulting estimate of (3.4÷3.5)±0.2 mm/yr (depending on the GIA correction applied) is comparable to the satellite result of (3.1±0.3) mm/yr.