3 resultados para Convolution (Mathematic)

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si è studiato un metodo per modellare e virtualizzare tramite algoritmi in Matlab le distorsioni armoniche di un dispositivo audio non lineare, ovvero uno “strumento” che, sollecitato da un segnale audio, lo modifichi, introducendovi delle componenti non presenti in precedenza. Il dispositivo che si è scelto per questo studio il pedale BOSS SD-1 Super OverDrive per chitarra elettrica e lo “strumento matematico” che ne fornisce il modello è lo sviluppo in serie di Volterra. Lo sviluppo in serie di Volterra viene diffusamente usato nello studio di sistemi fisici non lineari, nel caso in cui si abbia interesse a modellare un sistema che si presenti come una “black box”. Il metodo della Nonlinear Convolution progettato dall'Ing. Angelo Farina ha applicato con successo tale sviluppo anche all'ambito dell'acustica musicale: servendosi di una tecnica di misurazione facilmente realizzabile e del modello fornito dalla serie di Volterra Diagonale, il metodo permette di caratterizzare un dispositivo audio non lineare mediante le risposte all'impulso non lineari che il dispositivo fornisce a fronte di un opportuno segnale di test (denominato Exponential Sine Sweep). Le risposte all'impulso del dispositivo vengono utilizzate per ricavare i kernel di Volterra della serie. L'utilizzo di tale metodo ha permesso all'Università di Bologna di ottenere un brevetto per un software che virtualizzasse in post-processing le non linearità di un sistema audio. In questa tesi si è ripreso il lavoro che ha portato al conseguimento del brevetto, apportandovi due innovazioni: si è modificata la scelta del segnale utilizzato per testare il dispositivo (si è fatto uso del Synchronized Sine Sweep, in luogo dell'Exponential Sine Sweep); si è messo in atto un primo tentativo di orientare la virtualizzazione verso l'elaborazione in real-time, implementando un procedimento (in post-processing) di creazione dei kernel in dipendenza dal volume dato in input al dispositivo non lineare.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, integro-differential reaction-diffusion models are presented for the description of the temporal and spatial evolution of the concentrations of Abeta and tau proteins involved in Alzheimer's disease. Initially, a local model is analysed: this is obtained by coupling with an interaction term two heterodimer models, modified by adding diffusion and Holling functional terms of the second type. We then move on to the presentation of three nonlocal models, which differ according to the type of the growth (exponential, logistic or Gompertzian) considered for healthy proteins. In these models integral terms are introduced to consider the interaction between proteins that are located at different spatial points possibly far apart. For each of the models introduced, the determination of equilibrium points with their stability and a study of the clearance inequalities are carried out. In addition, since the integrals introduced imply a spatial nonlocality in the models exhibited, some general features of nonlocal models are presented. Afterwards, with the aim of developing simulations, it is decided to transfer the nonlocal models to a brain graph called connectome. Therefore, after setting out the construction of such a graph, we move on to the description of Laplacian and convolution operations on a graph. Taking advantage of all these elements, we finally move on to the translation of the continuous models described above into discrete models on the connectome. To conclude, the results of some simulations concerning the discrete models just derived are presented.