2 resultados para Conjectural variations
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Ocean acidification is an effect of the rise in atmospheric CO2, which causes a reduction in the pH of the ocean and generates a number of changes in seawater chemistry and consequently potentially impacts seawater life. The effect of ocean acidification on metabolic processes (such as net community production and community respiration and on particulate organic carbon (POC) concentrations was investigated in summer 2012 at Cap de la Revellata in Corsica (Calvi, France). Coastal surface water was enclosed in 9 mesocosms and subjected to 6 pCO2 levels (3 replicated controls and 6 perturbations) for approximately one month. No trend was found in response to increasing pCO2 in any of the biological and particulate analyses. Community respiration was relatively stable throughout the experiment in all mesocosms, and net community production was most of the time close to zero. Similarly, POC concentrations were not affected by acidification during the whole experimental period. Such as the global ocean, the Mediterranean Sea has an oligotrophic nature. Based on present results, it seems likely that seawater acidification will not have significant effects on photosynthetic rates, microbial metabolism and carbon transport.
Resumo:
This thesis is focused on the viscoelastic behavior of macro-synthetic fiber-reinforced concrete (MSFRC) with polypropylene studied numerically when subjected to temperature variations (-30 oC to +60 oC). LDPM (lattice discrete particle model), a meso-scale model for heterogeneous composites, is used. To reproduce the MSFRC structural behavior, an extended version of LDPM that includes fiber effects through fiber-concrete interface micromechanics, called LDPM-F, is applied. Model calibration is performed based on three-point bending, cube, and cylinder test for plain concrete and MSFRC. This is followed by a comprehensive literature study on the variation of mechanical properties with temperature for individual fibers and plain concrete. This literature study and past experimental test results constitute inputs for final numerical simulations. The numerical response of MSFRC three-point bending test is replicated and compared with the previously conducted experimental test results; finally, the conclusions were drawn. LDPM numerical model is successfully calibrated using experimental responses on plain concrete. Fiber-concrete interface micro-mechanical parameters are subsequently fixed and LDPM-F models are calibrated based on MSFRC three-point bending test at room temperature. Number of fibers contributing crack bridging mechanism is computed and found to be in good agreement with experimental counts. Temperature variations model for individual constituents of MSFRC, fibers and plain concrete, are implemented in LDPM-F. The model is validated for MSFRC three-point bending stress-CMOD (crack mouth opening) response reproduced at -30 oC, -15 oC, 0 oC, +20 oC, +40 oC and +60 oC. It is found that the model can well describe the temperature variation behavior of MSFRC. At positive temperatures, simulated responses are in good agreement. Slight disagreement in negative regimes suggests an in-depth study on fiber-matrix interface bond behavior with varying temperatures.