4 resultados para Concentration d’oxygène
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Particle concentration is a principal factor that affects erosion rate of solid surfaces under particle impact, such as pipe bends in pneumatic conveyors; it is well known that a reduction in the specific erosion rate occurs under high particle concentrations, a phenomenon referred to as the “shielding effect”. The cause of shielding is believed to be increased likelihood of inter-particulate collisions, the high collision probability between incoming and rebounding particles reducing the frequency and the severity of particle impacts on the target surface. In this study, the effects of particle concentration on erosion of a mild steel bend surface have been investigated in detail using three different particulate materials on an industrial scale pneumatic conveying test rig. The materials were studied so that two had the same particle density but very different particle size, whereas two had very similar particle size but very different particle density. Experimental results confirm the shielding effect due to high particle concentration and show that the particle density has a far more significant influence than the particle size, on the magnitude of the shielding effect. A new method of correcting for change in erosivity of the particles in repeated handling, to take this factor out of the data, has been established, and appears to be successful. Moreover, a novel empirical model of the shielding effects has been used, in term of erosion resistance which appears to decrease linearly when the particle concentration decreases. With the model it is possible to find the specific erosion rate when the particle concentration tends to zero, and conversely predict how the specific erosion rate changes at finite values of particle concentration; this is critical to enable component life to be predicted from erosion tester results, as the variation of the shielding effect with concentration is different in these two scenarios. In addition a previously unreported phenomenon has been recorded, of a particulate material whose erosivity has steadily increased during repeated impacts.
Resumo:
In this Thesis work we have studied the properties of high-redshift galaxy clusters through the X-ray emission from their intracluster gas. In particular, we have focused on the relation between concentration and mass that is related to the density of the universe at the formation time of the clusters and therefore, it is a powerful cosmological probe. Concentration is expected to be a decreasing function of mass but a complete characterization of this relation has not been reached yet. We have analysed 22 clusters observed withe the Chandra satellite at high redshift and we have investigated the concentration-mass relation.
Resumo:
Extended cluster radio galaxies show different morphologies com- pared to those found isolated in the field. Indeed, symmetric double radio galaxies are only a small percentage of the total content of ra- dio loud cluster galaxies, which show mainly tailed morphologies (e.g. O’Dea & Owen, 1985). Moreover, cluster mergers can deeply affect the statistical properties of their radio activity. In order to better understand the morphological and radio activity differences of the radio galaxies in major mergeing and non/tidal-merging clusters, we performed a multifrequency study of extended radio galax- ies inside two cluster complexes, A3528 and A3558. They belong to the innermost region of the Shapley Concentration, the most massive con- centration of galaxy clusters (termed supercluster) in the local Universe, at average redshift z ≈ 0.043. We analysed low frequency radio data performed at 235 and 610 MHz with Giant Metrewave Radio Telescope (GMRT) and we combined them with proprietary and literature observations, in order to have a wide frequency range (150 MHz to 8.4 GHz) to perform the spectral analysis. The low frequency images allowed us to carry out a detailed study of the radio tails and diffuse emission found in some cases. The results in the radio band were also qualitatively compared with the X-ray information coming from XMM-Newton observations, in order to test the interaction between radio galaxies and cluster weather. We found that the brightest central galaxies (BCGs) in the A3528 cluster complex are powerful and present substantial emission from old relativistic plasma characterized by a steep spectrum (α > 2). In the light of observational pieces of evidence, we suggest they are possible re-started radio galaxies. On the other hand, the tailed radio galaxies trace the host galaxy motion with respect to the ICM, and our find- ings is consistent with the dynamical interpretation of a tidal interaction (Gastaldello et al. 2003). On the contrary, the BCGs in the A3558 clus- ter complex are either quiet or very faint radio galaxies, supporting the hypothesis that clusters mergers quench the radio emission from AGN.
Resumo:
Groundwater represents the most important raw material. Germany struggles to maintain the best water quality possible by providing advanced monitoring systems and legal measures to prevent further pollution. In areas involved in the intensive growing of plantations, one of the major contamination factors derives from nitrate. The aim of this master thesis is the characterisation of the Water Protection Area of Bremen (Germany). Denitrification is a natural process, representing the best means of natural reduction of the hazardous nitrate ion, which is dangerous both for human health and for the development of eutrophication. The study has been possible thanks to the collaboration with the University of Bremen, the Geological Service of Bremen (GDfB) and Peter Spiedt (Water Supply Company of Bremen). It will be defined whether nitrate amounts in the groundwater still overcome the threshold legally imposed, and state if the denitrification process takes place, thanks to new samples collected in 2015 and their integration with historical data. Gas samples have been gathered to test them with the “N2/Ar method”, which is able to estimate the denitrification rate quantitatively. Analyses stated the effective occurrence of the reaction, nevertheless showing that it only affects the chemical of the deep aquifers and not shallow ones. Temporal trends concentrations of nitrate have shown that no real improvement took place in the past years. It will be commented that despite the denitrification being responsible for an efficacious lowering in the nitrate ion, it needs reactive materials to take place. Since the latter are finite elements, it is not an endless process. It is thus believed that is clearly necessary to adopt a better attitude in order to maintain the best chemical qualities possible in such an important area, providing drinking water.