2 resultados para Complex dynamics
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
One of the most serious problems of the modern medicine is the growing emergence of antibiotic resistance among pathogenic bacteria. In this circumstance, different and innovative approaches for treating infections caused by multidrug-resistant bacteria are imperatively required. Bacteriophage Therapy is one among the fascinating approaches to be taken into account. This consists of the use of bacteriophages, viruses that infect bacteria, in order to defeat specific bacterial pathogens. Phage therapy is not an innovative idea, indeed, it was widely used around the world in the 1930s and 1940s, in order to treat various infection diseases, and it is still used in Eastern Europe and the former Soviet Union. Nevertheless, Western scientists mostly lost interest in further use and study of phage therapy and abandoned it after the discovery and the spread of antibiotics. The advancement of scientific knowledge of the last years, together with the encouraging results from recent animal studies using phages to treat bacterial infections, and above all the urgent need for novel and effective antimicrobials, have given a prompt for additional rigorous researches in this field. In particular, in the laboratory of synthetic biology of the department of Life Sciences at the University of Warwick, a novel approach was adopted, starting from the original concept of phage therapy, in order to study a concrete alternative to antibiotics. The innovative idea of the project consists in the development of experimental methodologies, which allow to engineer a programmable synthetic phage system using a combination of directed evolution, automation and microfluidics. The main aim is to make “the therapeutics of tomorrow individualized, specific, and self-regulated” (Jaramillo, 2015). In this context, one of the most important key points is the Bacteriophage Quantification. Therefore, in this research work, a mathematical model describing complex dynamics occurring in biological systems involving continuous growth of bacteriophages, modulated by the performance of the host organisms, was implemented as algorithms into a working software using MATLAB. The developed program is able to predict different unknown concentrations of phages much faster than the classical overnight Plaque Assay. What is more, it gives a meaning and an explanation to the obtained data, making inference about the parameter set of the model, that are representative of the bacteriophage-host interaction.
Resumo:
Automatic design has become a common approach to evolve complex networks, such as artificial neural networks (ANNs) and random boolean networks (RBNs), and many evolutionary setups have been discussed to increase the efficiency of this process. However networks evolved in this way have few limitations that should not be overlooked. One of these limitations is the black-box problem that refers to the impossibility to analyze internal behaviour of complex networks in an efficient and meaningful way. The aim of this study is to develop a methodology that make it possible to extract finite-state automata (FSAs) descriptions of robot behaviours from the dynamics of automatically designed complex controller networks. These FSAs unlike complex networks from which they're extracted are both readable and editable thus making the resulting designs much more valuable.