2 resultados para Competition model

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1d extended Hubbard model with soft-shoulder potential has proved itself to be very difficult to study due its non solvability and to competition between terms of the Hamiltonian. Given this, we tried to investigate its phase diagram for filling n=2/5 and range of soft-shoulder potential r=2 by using Machine Learning techniques. That led to a rich phase diagram; calling U, V the parameters associated to the Hubbard potential and the soft-shoulder potential respectively, we found that for V<5 and U>3 the system is always in Tomonaga Luttinger Liquid phase, then becomes a Cluster Luttinger Liquid for 57, with a quasi-perfect crystal in the U<3V/2 and U>5 region. Finally we found that for U<5 and V>2-3 the system shall maintain the Cluster Luttinger Liquid structure, with a residual in-block single particle mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resolution of multisensory deficits has been observed in teenagers with Autism Spectrum Disorders (ASD) for complex, social speech stimuli; this resolution extends to more basic multisensory processing, involving low-level stimuli. In particular, a delayed transition of multisensory integration (MSI) from a default state of competition to one of facilitation has been observed in ASD children. In other terms, the complete maturation of MSI is achieved later in ASD. In the present study a neuro-computational model is used to reproduce some patterns of behavior observed experimentally, modeling a bisensory reaction time task, in which auditory and visual stimuli are presented in random sequence alone (A or V) or together (AV). The model explains how the default competitive state can be implemented via mutual inhibition between primary sensory areas, and how the shift toward the classical multisensory facilitation, observed in adults, is the result of inhibitory cross-modal connections becoming excitatory during the development. Model results are consistent with a stronger cross-modal inhibition in ASD children, compared to normotypical (NT) ones, suggesting that the transition toward a cooperative interaction between sensory modalities takes longer to occur. Interestingly, the model also predicts the difference between unisensory switch trials (in which sensory modality switches) and unisensory repeat trials (in which sensory modality repeats). This is due to an inhibitory mechanism, characterized by a slow dynamics, driven by the preceding stimulus and inhibiting the processing of the incoming one, when of the opposite sensory modality. These findings link the cognitive framework delineated by the empirical results to a plausible neural implementation.