5 resultados para Communications, Military

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questa Tesi aspira a mostrare un codice a livello di pacchetto, che abbia performance molto vicine a quello ottimo, per progetti di comunicazioni Satellitari. L’altro scopo di questa Tesi è quello di capire se rimane ancora molto più difficile maneggiare direttamente gli errori piuttosto che le erasures. Le applicazioni per comunicazioni satellitari ora come ora usano tutte packet erasure coding per codificare e decodificare l’informazione. La struttura dell’erasure decoding è molto semplice, perché abbiamo solamente bisogno di un Cyclic Redundancy Check (CRC) per realizzarla. Il problema nasce quando abbiamo pacchetti di dimensioni medie o piccole (per esempio più piccole di 100 bits) perché in queste situazioni il costo del CRC risulta essere troppo dispendioso. La soluzione la possiamo trovare utilizzando il Vector Symbol Decoding (VSD) per raggiungere le stesse performance degli erasure codes, ma senza la necessità di usare il CRC. Per prima cosa viene fatta una breve introduzione su come è nata e su come si è evoluta la codifica a livello di pacchetto. In seguito è stato introdotto il canale q-ary Symmetric Channel (qSC), con sia la derivazione della sua capacità che quella del suo Random Coding Bound (RCB). VSD è stato poi proposto con la speranza di superare in prestazioni il Verification Based Decoding (VBD) su il canale qSC. Infine, le effettive performance del VSD sono state stimate via simulazioni numeriche. I possibili miglioramenti delle performance, per quanto riguarda il VBD sono state discusse, come anche le possibili applicazioni future. Inoltre abbiamo anche risposto alla domande se è ancora così tanto più difficile maneggiare gli errori piuttosto che le erasure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The space environment has always been one of the most challenging for communications, both at physical and network layer. Concerning the latter, the most common challenges are the lack of continuous network connectivity, very long delays and relatively frequent losses. Because of these problems, the normal TCP/IP suite protocols are hardly applicable. Moreover, in space scenarios reliability is fundamental. In fact, it is usually not tolerable to lose important information or to receive it with a very large delay because of a challenging transmission channel. In terrestrial protocols, such as TCP, reliability is obtained by means of an ARQ (Automatic Retransmission reQuest) method, which, however, has not good performance when there are long delays on the transmission channel. At physical layer, Forward Error Correction Codes (FECs), based on the insertion of redundant information, are an alternative way to assure reliability. On binary channels, when single bits are flipped because of channel noise, redundancy bits can be exploited to recover the original information. In the presence of binary erasure channels, where bits are not flipped but lost, redundancy can still be used to recover the original information. FECs codes, designed for this purpose, are usually called Erasure Codes (ECs). It is worth noting that ECs, primarily studied for binary channels, can also be used at upper layers, i.e. applied on packets instead of bits, offering a very interesting alternative to the usual ARQ methods, especially in the presence of long delays. A protocol created to add reliability to DTN networks is the Licklider Transmission Protocol (LTP), created to obtain better performance on long delay links. The aim of this thesis is the application of ECs to LTP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un sistema mobile di comunicazione è un sistema di telecomunicazioni in cui è possibile mantenere la connessione o legame tra due o più utenti, anche nelle situazioni di mobilità totale o parziale degli stessi utenti. I sistemi radiomobili si stanno evolvendo dalla creazione del 1G (prima generazione) al 4G (quarta generazione). I telefoni di ogni generazione si differenziano in quattro aspetti principali : accesso radio, velocità di trasmissione dati, larghezza di banda e sistemi di commutazione. In questa tesi si affronta il tema dei sistemi 5G , negli ambienti terrestri e satellitari , in quanto sono l'ultima evoluzione dei sistemi mobili . Si introduce il passaggio dalla prima alla connessione di quarta generazione , al fine di capire perché 5G sta per cambiare la nostra vita . Quello che mi colpisce è il sito italiano www.Repubblica.it che dice : " con la nuova generazione 5 possiamo affidare le intere porzioni nette di vita". La tecnologia cellulare , infatti , ha cambiato radicalmente la nostra società e il nostro modo di comunicare . In primo luogo è cambiata la telefonia vocale , per poi trasferirsi all' accesso dati , applicazioni e servizi. Tuttavia , Internet non è stato ancora pienamente sfruttato dai sistemi cellulari. Con l'avvento del 5G avremo l'opportunità di scavalcare le capacità attuali di Internet . Il sistema di comunicazione di quinta generazione è visto come la rete wireless reale , in grado di supportare applicazioni web wireless a livello mondiale ( wwww ). Ci sono due punti di vista dei sistemi 5G : evolutivo e rivoluzionario. Dal punto di vista evolutivo, i sistemi 5G saranno in grado di supportare wwww permettendo una rete altamente flessibile come un Adhoc rete wireless dinamica ( DAWN ) . In questa visione tecnologie avanzate, tra cui antenna intelligente e modulazione flessibile , sono le chiavi per ottimizzare le reti wireless ad hoc. Dal punto di vista rivoluzionario, i sistemi 5G dovrebbe essere una tecnologia intelligente in grado di interconnettere tutto il mondo senza limiti . Un esempio di applicazione potrebbe essere un robot wireless con intelligenza artificiale .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.