5 resultados para Column interns of Plasma
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The present work consists of a detailed numerical analysis of a 4-way joint made of a precast column and two partially precast beams. The structure has been previously built and experimentally analyzed through a series of cyclic loads at the Laboratory of Tests on Structures (Laboratorio di Prove su Strutture, La. P. S.) of the University of Bologna. The aim of this work is to design a 3D model of the joint and then apply the techniques of nonlinear finite element analysis (FEA) to computationally reproduce the behavior of the structure under cyclic loads. Once the model has been calibrated to correctly emulate the joint, it is possible to obtain new insights useful to understand and explain the physical phenomena observed in the laboratory and to describe the properties of the structure, such as the cracking patterns, the force-displacement and the moment-curvature relations, as well as the deformations and displacements of the various elements composing the joint.
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.
Resumo:
The aim of this work is to analyse the chemistry models of low pressure Helicon discharges fed with iodine and air. In particular the focus of this research is to understand the plasma dynamics in order to predict propulsive performances of iodine and air-breathing Helicon Plasma Thrusters. The two systems have been simulated and analysed with the use of global models, i.e. a 0 dimensional tool to solve the set of governing equations by assuming that all quantities are volume averaged. Furthermore, some strategies have been implemented to improve the accuracy of this approach. A verification have been accomplished on the global models for both iodine and air, comparing results against simulations taken from literature. Moreover, the iodine global model has been validated against the experimental measurements of REGULUS, an helicon plasma thruster developed by the Italian company T4i, with a good agreement. From the analysis of iodine model, it has been found a significantly higher density for atomic positive ions with respect to molecular ions. Negative ions, instead, have shown to have negligible effect on the propulsive results. Also, the influence of reactions between heavy particles has been analysed with the global model. Results have demonstrated that, in the iodine case, chemistry is almost entirely affected by electronic collisions. For what concerns air-breathing results, it has been investigated the effects of the orbital height on propulsive performances. In particular, the global model has shown that at lower height, the values of thrust and specific impulse are lower due a change in atmosphere concentration. Finally, the iodine chemistry model has been introduced in the fluid code 3D-VIRTUS in order to preliminary assess the plasma properties of a Helicon discharge chamber for electric propulsion.
Resumo:
In this thesis effects of plasma actuators based on Dielectric Barrier Discharge (DBD) technology over a NACA 0015 bidimensional airfoil have been analyzed in an experimental way, at low Reynolds number. Work developed on thesis has been carried on in partnership with the Department of Electrical Engineering of Università di Bologna, inside Wind Tunnel of the Applied Aerodynamic Laboratory of Aerospace Engineering faculty. In order to verify the effectiveness of these active control devices, the analysis has shown how actuators succeed in prevent boundary layer separation only in certain conditions af angle of attack and Reynolds numbers. Moreover, in this thesis actuators’ chordwise position effect has been also analyzed, together with the influence of steady and unsteady operations.