3 resultados para Collinear factorization

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obiettivo della tesi è analizzare e testare i principali approcci di Machine Learning applicabili in contesti semantici, partendo da algoritmi di Statistical Relational Learning, quali Relational Probability Trees, Relational Bayesian Classifiers e Relational Dependency Networks, per poi passare ad approcci basati su fattorizzazione tensori, in particolare CANDECOMP/PARAFAC, Tucker e RESCAL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il crescente utilizzo di sistemi di analisi high-throughput per lo studio dello stato fisiologico e metabolico del corpo, ha evidenziato che una corretta alimentazione e una buona forma fisica siano fattori chiave per la salute. L'aumento dell'età media della popolazione evidenzia l'importanza delle strategie di contrasto delle patologie legate all'invecchiamento. Una dieta sana è il primo mezzo di prevenzione per molte patologie, pertanto capire come il cibo influisce sul corpo umano è di fondamentale importanza. In questo lavoro di tesi abbiamo affrontato la caratterizzazione dei sistemi di imaging radiografico Dual-energy X-ray Absorptiometry (DXA). Dopo aver stabilito una metodologia adatta per l'elaborazione di dati DXA su un gruppo di soggetti sani non obesi, la PCA ha evidenziato alcune proprietà emergenti dall'interpretazione delle componenti principali in termini delle variabili di composizione corporea restituite dalla DXA. Le prime componenti sono associabili ad indici macroscopici di descrizione corporea (come BMI e WHR). Queste componenti sono sorprendentemente stabili al variare dello status dei soggetti in età, sesso e nazionalità. Dati di analisi metabolica, ottenuti tramite Magnetic Resonance Spectroscopy (MRS) su campioni di urina, sono disponibili per circa mille anziani (provenienti da cinque paesi europei) di età compresa tra i 65 ed i 79 anni, non affetti da patologie gravi. I dati di composizione corporea sono altresì presenti per questi soggetti. L'algoritmo di Non-negative Matrix Factorization (NMF) è stato utilizzato per esprimere gli spettri MRS come combinazione di fattori di base interpretabili come singoli metaboliti. I fattori trovati sono stabili, quindi spettri metabolici di soggetti sono composti dallo stesso pattern di metaboliti indipendentemente dalla nazionalità. Attraverso un'analisi a singolo cieco sono stati trovati alti valori di correlazione tra le variabili di composizione corporea e lo stato metabolico dei soggetti. Ciò suggerisce la possibilità di derivare la composizione corporea dei soggetti a partire dal loro stato metabolico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Molti metodi di compressione lossless si basano sulle idee che nel 1977 i ricercatori israeliani Abraham Lempel e Jacob Ziv hanno presentato nell’articolo “A universal Algorithm for sequential Data Compression”. In questa tesi viene descritto il metodo di fattorizzazione LZ77, illustrato appunto da Lempel e Ziv, e vengono esposte le strutture dati fondamentali per la sua realizzazione. Sono inoltre descritti due algoritmi CPS1 e CPS2 che realizzano LZ77. Infine, sfruttando i dati raccolti sperimentalmente da Al-Haffedh et al. in “A Comparison of Index-Based Lempel-Ziv LZ77 Factorization Algorithms” [2012], gli algoritmi descritti vengono confrontati in termini di spazio e tempo.