2 resultados para Cold Climate

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the interaction of sea ice with offshore structures is of primary importance for the development of technology in cold climate regions. The rheological properties of sea ice (strength, creep, viscosity) as well as the roughness of the contact surface are the main factors influencing the type of interaction with a structure. A device was developed and designed and small scale laboratory experiments were carried out to study sea ice frictional interaction with steel material by means of a uniaxial compression rig. Sea-ice was artificially grown between a stainless steel piston (of circular cross section) and a hollow cylinder of the same material, coaxial to the former and of the same surface roughness. Three different values for the roughness were tested: 1.2, 10 and 30 μm Ry (maximum asperities height), chosen as representative values for typical surface conditions, from smooth to normally corroded steel. Creep tests (0.2, 0.3, 0.4 and 0.6 kN) were conducted at T = -10 ºC. By pushing the piston head towards the cylinder base, three different types of relative movement were observed: 1) the piston slid through the ice, 2) the piston slid through the ice and the ice slid on the surface of the outer cylinder, 3) the ice slid only on the cylinder surface. A cyclic stick-slip motion of the piston was detected with a representative frequency of 0.1 Hz. The ratio of the mean rate of axial displacement to the frequency of the stick-slip oscillations was found to be comparable to the roughness length (Sm). The roughness is the most influential parameter affecting the amplitude of the oscillations, while the load has a relevant influence on the their frequency. Guidelines for further investigations were recommended. Marco Nanetti - seloselo@virgilio.it

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis tries to interpret the origin and evolution of karst-like forms present in Arabia Terra, a region of Mars that develops in the equatorial zone of the planet. The work has been carried out specifically in the craters Crommelin (4o 91’ N-10o 51’ E), 12000088 (3o 48’ N-1o 30’ E), NE 12000088 (4° 20’ N-2° 50’ E), C "2" (3° 54’ N-1° W), and in their surrounding areas. These craters contain layered deposits characterized by a high albedo and on which erosion is very pronounced. The area containing the craters is a plateau that has the same characteristics of albedo and texture. The preliminary morphological study has made use of instrumentation such as the Mars Reconnaissance Orbiter (MRO), in particular HiRISE images (High Resolution Imaging Science Experiment), CTX (Context Camera) and CRISM (Compact Reconnaissance Imaging Spectrometers for Mars). A regional geomorphological map has been drawn up containing the main morphotypes, and detailed geomorphological maps were prepared for different karst-like morphologies. The analysis of spectral data collected from CRISM instrumentation has allowed to identify the footprint of sulphate minerals in the external area. Data were collected for morphometric negative forms (karst-like) and positive forms (mud volcanoes, dikes and pingos). For the analysis of the relief forms DTMs (Digital Terrain Models) produced by the union of stereographic CTX couples or HiRISE were used. From the analysis of high-resolution images morphological footprints similar to periglacial environments have been identified, including the presence of patterned ground and polygonal cracks found all over the area of investigation, and relief structures similar to pingos present in the crater C "2". These observations allow us to imagine a geological past with a cold climate at the equator able to freeze the few fluids present in the Martian arid terrain. The development of karst-like landforms, on the other hand, can be attributed to a subsequent improval of the weather conditions that led to a normal climate regime for the equatorial areas, resulting in the degradation of the permafrost. The melt waters have thus allowed the partial dissolution of the sulphate layers. The karst-like forms look rather fresh suggesting them to be not that old.