4 resultados para Co(II), Ni(II) and Cu(II) complexes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The present work is part of a research project that involves the study of new copper based complexes to be employed as photosensitizer in carbon dioxide photoreduction reaction. My research project is focused on the synthesis and characterization of 1,2,3 triazoles with a quinoline or pyridine in the lateral chain, which have been successively utilized to synthesize heteroleptic Cu(I) complexes. Redox potential and photophysic properties have been studied.
Resumo:
Obscured AGN are a crucial ingredient to understand the full growth history of super massive black holes and the coevolution with their host galaxies, since they constitute the bulk of the BH accretion. In the distant Universe, many of them are hosted by submillimeter galaxies (SMGs), characterized by a high production of stars and a very fast consumption of gas. Therefore, the analysis of this class of objects is fundamental to investigate the role of the ISM in the early coevolution of galaxies and black holes. We present a multiwavelength study of a sample of six obscured X-ray selected AGN at z>2.5 in the CDF-S, detected in the far-IR/submm bands. We performed the X-ray spectral analysis based on the 7Ms Chandra dataset, which provides the best X-ray spectral information currently available for distant AGN. We were able to place constraints on the obscuring column densities and the intrinsic luminosities of our targets. Moreover, we built up the UV to FIR spectral energy distributions (SEDs) by combining the broad-band photometry from CANDELS and the Herschel catalogs, and analyzed them by means of an SED decomposition technique. Therefore, we derived important physical parameters of both the host galaxy and the AGN. In addition, we obtained, through an empirical calibration, the gas mass in the host galaxy and assessed the galaxy sizes in order to estimate the column density associated with the host ISM. The comparison of the ISM column densities with the values measured from the X-ray spectral analysis pointed out that the contribution of the host ISM to the obscuration of the AGN emission can be substantial, ranging from ~10% up to ~100% of the value derived from the X-ray spectra. The absorption may occur at different physical scales in these sources and, in particular, the medium in the host galaxy is an ingredient that should be taken into account, since it may have a relevant role in driving the early co-evolution of galaxies with their black holes.
Resumo:
The research performed in the framework of this Master Thesis has been directly inspired by the recent work of an organometallic research group led by Professor Maria Cristina Cassani on a topic related to the structures, dynamics and catalytic activity of N-heterocyclic carbene-amide rhodium(I) complexes1. A series of [BocNHCH2CH2ImR]X (R = Me, X = I, 1a’; R = Bz, X = Br, 1b’; R = trityl, X = Cl, 1c’) amide-functionalized imidazolium salts bearing increasingly bulky N-alkyl substituents were synthetized and characterized. Subsequently, these organic precursors were employed in the synthesis of silver(I) complexes as intermediate compounds on a way to rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-(2-NHBoc-ethyl)-3-R-imidazolin-2-ylidene; X = Cl, R = Me (3a’), R = Bz (3b’), R = trityl (3c’); X = I, R = Me (4a’)). VT NMR studies of these complexes revealed a restricted rotation barriers about the metal-carbene bond. However, while the rotation barriers calculated for the complexes in which R = Me, Bz (3a’,b’ and 4a) matched the experimental values, this was not true in the trityl case 3c’, where the experimental value was very similar to that obtained for compound 3b’ and much smaller with respect to the calculated one. In addition, the energy barrier derived for 3c’ from line shape simulation showed a strong dependence on the temperature, while the barriers measured for 3a’,b’ did not show this effect. In view of these results and in order to establish the reasons for the previously found inconsistency between calculated and experimental thermodynamic data, the first objective of this master thesis was the preparation of a series of rhodium(I) complexes [Rh(NBD)X(NHC)] (NHC = 1-benzyl-3-R-imidazolin-2-ylidene; X = Cl, R = Me, Bz, trityl, tBu), containing the benzyl substituent as a chiral probe, followed by full characterization. The second objective of this work was to investigate the catalytic activity of the new rhodium compounds in the hydrosilylation of terminal alkynes for comparison purposes with the reported complexes. Another purpose of this work was to employ the prepared N-heterocyclic ligands in the synthesis of iron(II)-NHC complexes.
Resumo:
The aim of this master’s research thesis was the employment of an enantiopure 1,3-aminoalcohol, the 1-(α-aminobenzyl)-2-naphthol, known as Betti base, for the synthesis of some novel compounds which show a C2 symmetry. Some of these compounds, after derivatization, were used as ligands in association with transition metals to prepare some catalysts for enantioselective catalytic reactions. Some aminoalcohol (Salan-type) derivatives of these compounds were obtained upon reduction and in some cases it was possible to obtain complexes with transition metals such as Mn, Ni, Co and Cu. Furthermore a novel 6-membered analogue bisoxazoline ligand, 2,6-bis((R)-1-Phenyl-1H-naphtho[1,2-e][1,3]oxazin-3-yl)pyridine, was obtained and from it two Cu-complexes were prepared. The metal complexes were employed in some reactions to test the asymmetric induction, which was in some cases up to discrete values.