4 resultados para Clustering analysis

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questa dissertazione esamina le sfide e i limiti che gli algoritmi di analisi di grafi incontrano in architetture distribuite costituite da personal computer. In particolare, analizza il comportamento dell'algoritmo del PageRank così come implementato in una popolare libreria C++ di analisi di grafi distribuiti, la Parallel Boost Graph Library (Parallel BGL). I risultati qui presentati mostrano che il modello di programmazione parallela Bulk Synchronous Parallel è inadatto all'implementazione efficiente del PageRank su cluster costituiti da personal computer. L'implementazione analizzata ha infatti evidenziato una scalabilità negativa, il tempo di esecuzione dell'algoritmo aumenta linearmente in funzione del numero di processori. Questi risultati sono stati ottenuti lanciando l'algoritmo del PageRank della Parallel BGL su un cluster di 43 PC dual-core con 2GB di RAM l'uno, usando diversi grafi scelti in modo da facilitare l'identificazione delle variabili che influenzano la scalabilità. Grafi rappresentanti modelli diversi hanno dato risultati differenti, mostrando che c'è una relazione tra il coefficiente di clustering e l'inclinazione della retta che rappresenta il tempo in funzione del numero di processori. Ad esempio, i grafi Erdős–Rényi, aventi un basso coefficiente di clustering, hanno rappresentato il caso peggiore nei test del PageRank, mentre i grafi Small-World, aventi un alto coefficiente di clustering, hanno rappresentato il caso migliore. Anche le dimensioni del grafo hanno mostrato un'influenza sul tempo di esecuzione particolarmente interessante. Infatti, si è mostrato che la relazione tra il numero di nodi e il numero di archi determina il tempo totale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The investigations of the large-scale structure of our Universe provide us with extremely powerful tools to shed light on some of the open issues of the currently accepted Standard Cosmological Model. Until recently, constraining the cosmological parameters from cosmic voids was almost infeasible, because the amount of data in void catalogues was not enough to ensure statistically relevant samples. The increasingly wide and deep fields in present and upcoming surveys have made the cosmic voids become promising probes, despite the fact that we are not yet provided with a unique and generally accepted definition for them. In this Thesis we address the two-point statistics of cosmic voids, in the very first attempt to model its features with cosmological purposes. To this end, we implement an improved version of the void power spectrum presented by Chan et al. (2014). We have been able to build up an exceptionally robust method to tackle with the void clustering statistics, by proposing a functional form that is entirely based on first principles. We extract our data from a suite of high-resolution N-body simulations both in the LCDM and alternative modified gravity scenarios. To accurately compare the data to the theory, we calibrate the model by accounting for a free parameter in the void radius that enters the theory of void exclusion. We then constrain the cosmological parameters by means of a Bayesian analysis. As far as the modified gravity effects are limited, our model is a reliable method to constrain the main LCDM parameters. By contrast, it cannot be used to model the void clustering in the presence of stronger modification of gravity. In future works, we will further develop our analysis on the void clustering statistics, by testing our model on large and high-resolution simulations and on real data, also addressing the void clustering in the halo distribution. Finally, we also plan to combine these constraints with those of other cosmological probes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'esperimento ATLAS, come gli altri esperimenti che operano al Large Hadron Collider, produce Petabytes di dati ogni anno, che devono poi essere archiviati ed elaborati. Inoltre gli esperimenti si sono proposti di rendere accessibili questi dati in tutto il mondo. In risposta a questi bisogni è stato progettato il Worldwide LHC Computing Grid che combina la potenza di calcolo e le capacità di archiviazione di più di 170 siti sparsi in tutto il mondo. Nella maggior parte dei siti del WLCG sono state sviluppate tecnologie per la gestione dello storage, che si occupano anche della gestione delle richieste da parte degli utenti e del trasferimento dei dati. Questi sistemi registrano le proprie attività in logfiles, ricchi di informazioni utili agli operatori per individuare un problema in caso di malfunzionamento del sistema. In previsione di un maggiore flusso di dati nei prossimi anni si sta lavorando per rendere questi siti ancora più affidabili e uno dei possibili modi per farlo è lo sviluppo di un sistema in grado di analizzare i file di log autonomamente e individuare le anomalie che preannunciano un malfunzionamento. Per arrivare a realizzare questo sistema si deve prima individuare il metodo più adatto per l'analisi dei file di log. In questa tesi viene studiato un approccio al problema che utilizza l'intelligenza artificiale per analizzare i logfiles, più nello specifico viene studiato l'approccio che utilizza dell'algoritmo di clustering K-means.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we discuss the expansion of an existing project, called CHIMeRA, which is a comprehensive biomedical network, and the analysis of its sub-components by using graph theory. We describe how it is structured internally, what are the existing databases from which it retrieves information and what machine learning techniques are used in order to produce new knowledge. We also introduce a new technique for graph exploration that is aimed to speed-up the network cover time under the condition that the analyzed graph is stellar; if this condition is satisfied, the improvement in the performance compared to the conventional exploration technique is extremely appealing. We show that the stellar structure is highly recurrent for sub-networks in CHIMeRA generated by queries, which made this technique even more interesting. Finally, we describe the convenience in using the CHIMeRA network for research purposes and what it could become in a very near future.