2 resultados para Chronic exposure
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Faxaflói bay is a short, wide and shallow bay situated in the southwest of Iceland. Although hosting a rather high level of marine traffic, this area is inhabited by many different species of cetaceans, among which the white-beaked dolphin (Lagenorhynchus albirostris), found here all year-round. This study aimed to evaluate the potential effect of increasing marine traffic on white-beaked dolphins distribution and behaviour, and to determine whether or not a variation in sighting frequencies have occurred throughout years (2008 – 2014). Data on sightings and on behaviour, as well as photographic one, has been collected daily taking advantage of the whale-watching company “Elding” operating in the bay. Results have confirmed the importance of this area for white-beaked dolphins, which have shown a certain level of site fidelity. Despite the high level of marine traffic, this dolphin appears to tolerate the presence of boats: no differences in encounter durations and locations over the study years have occurred, even though with increasing number of vessels, an increase in avoidance strategies has been displayed. Furthermore, seasonal differences in probabilities of sightings, with respect to the time of the day, have been found, leading to suggest the existence of a daily cycle of their movements and activities within the bay. This study has also described a major decline in sighting rates throughout years raising concern about white-beaked dolphin conservation status in Icelandic waters. It is therefore highly recommended a new dedicated survey to be conducted in order to document the current population estimate, to better investigate on the energetic costs that chronic exposure to disturbances may cause, and to plan a more suitable conservation strategy for white-beaked dolphin around Iceland.
Resumo:
Global climate change is impacting coral reefs worldwide, with approximately 19% of reefs being permanently degraded, 15% showing symptoms of imminent collapse, and 20% at risk of becoming critically affected in the next few decades. This alarming level of reef degradation is mainly due to an increase in frequency and intensity of natural and anthropogenic disturbances. Recent evidence has called into question whether corals have the capacity to acclimatize or adapt to climate changes and some groups of corals showed inherent physiological tolerance to environmental stressors. The aim of the present study was to evaluate mRNA expression patterns underlying differences in thermal tolerance in specimen of the common reef-building coral Pocillopora verrucosa collected at different locations in Bangka Island waters (North Sulawesi, Indonesia). Part of the experimental work was carried out at the CoralEye Reef Research Outpost (Bangka Island). This includes sampling of corals at selected sites and at different depths (3 and 12 m) as well as their experimental exposure to an increased water temperature under controlled conditions for 3 and 7 days. Levels of mRNAs encoding ATP synthase (ATPs) NADH dehydrogenase (NDH) and a 70kDa Heat Shock Protein (HSP70) were evaluated by quantitative real time PCR. Transcriptional profiles evaluated under field conditions suggested an adaptation to peculiar local environmental conditions in corals collected at different sites and at the low depth. Nevertheless, high–depth collected corals showed a less pronounced site-to-site separation suggesting more homogenous environmental conditions. Exposure to an elevated temperature under controlled conditions pointed out that corals adapted to the high depth are more sensitive to the effects of thermal stress, so that reacted to thermal challenge by significantly over-expressing the selected gene products. Being continuously exposed to fluctuating environmental conditions, low-depth adapted corals are more resilient to the stress stimulus, and indeed showed unaffected or down-regulated mRNA expression profiles. Overall these results highlight that transcriptional profiles of selected genes involved in cellular stress response are modulated by natural seasonal temperature changes in P. verrucosa. Moreover, specimens living in more variable habitats (low-depth) exhibit higher basal HSP70 mRNA levels, possibly enhancing physiological tolerance to environmental stressors.