3 resultados para Chloride-ions
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Wearable biosensors are attracting interest due to their potential to provide continuous, real-time physiological information via dynamic, non-invasive measurements of biochemical markers in biofluids, such as interstitial fluid (ISF). One notable example of their applications is for glycemic monitoring in diabetic patients, which is typically carried out either by direct measurement of blood glucose via finger pricking or by wearable sensors that can continuously monitor glucose in ISF by sampling it from below the skin with a microneedle. In this context, the development of a new and minimally invasive multisensing tattoo-based platform for the monitoring of glucose and other analytes in ISF extracted through reverse iontophoresis in proposed by the GLUCOMFORT project. This elaborate describes the in-vitro development of flexible electrochemical sensors based on inkjet-printed PEDOT:PSS and metal inks that are capable of determining glucose and chloride at biologically relevant concentrations, making them good candidates for application in the GLUCOMFORT platform. In order to make PEDOT:PSS sensitive to glucose at micromolar concentrations, a biocompatible functionalization based on immobilized glucose oxidase and electrodeposited platinum was developed. This functionalization was successfully applied to bulk and flexible amperometric devices, the design of which was also optimized. Using the same strategy, flexible organic electrochemical transistors (OECTs) for glucose sensing were also made and successfully tested. For the sensing of chloride ions, an organic charge-modulated field-effect transistor (OCMFET) featuring a silver/silver chloride modified floating gate electrode was developed and tested.
Resumo:
Microalgae have been studied because of their great potential as a source of new compounds with important value for biotechnology and to understand their strategies of survival in extreme environments. The microalgae Coccomyxa sp., studied in this thesis, is a poly-extremophile witch was isolated from the acid mine drainage of S. Domingos mine. This environment is characterized by low pH (<3) and high concentration of metals, such as copper and iron. The main purpose of the present work was to evaluate the potential bioactivity in an ex-vivo animal model (Fundulus heteroclitus), and expression on selected genes, of cellular extracts obtained from cultures of Coccomyxa sp. at pH 7 without or with exposure to copper (0.6mM Cu²+). The extracts of Coccomyxa sp. cultured at pH 7 exposed to copper show a great potential to be used as epithelial NKCC inhibitors, revealing their potential use as diuretics, but did not show significant effects on gene expression. Coccomyxa sp. could be a good source of cellular extracts with a great potential to be used in pharmaceutical and biotechnology industries.