2 resultados para Chlorella pyrenoidosa

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalgae cultures are attracting great attentions in many industrial applications. However, one of the technical challenges is to cut down the capital and operational costs of microalgae production systems, with special difficulty in reactor design and scale-up. The thesis work open with an overview on the microalgae cultures as a possible answer to solve some of the upcoming planet issues and their applications in several fields. After the work offers a general outline on the state of the art of microalgae culture systems, taking a special look to the enclosed photobioreactors (PBRs). The overall objective of this study is to advance the knowledge of PBRs design and lead to innovative large scale processes of microalgae cultivation. An airlift flat panel photobioreactor was designed, modeled and experimentally characterized. The gas holdup, liquid flow velocity and oxygen mass transfer of the reactor were experimentally determined and mathematically modeled, and the performance of the reactor was tested by cultivation of microalgae. The model predicted data correlated well with experimental data, and the high concentration of suspension cell culture could be achieved with controlled conditions. The reactor was inoculated with the algal strain Scenedesmus obliquus sp. first and with Chlorella sp. later and sparged with air. The reactor was operated in batch mode and daily monitored for pH, temperature, and biomass concentration and activity. The productivity of the novel device was determined, suggesting the proposed design can be effectively and economically used in carbon dioxide mitigation technologies and in the production of algal biomass for biofuel and other bioproducts. Those research results favored the possibility of scaling the reactor up into industrial scales based on the models employed, and the potential advantages and disadvantages were discussed for this novel industrial design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interest of the scientific community towards organic pollutants in freshwater streams is fairly recent. During the past 50 years, thousands of chemicals have been synthesized and released into the general environment. Nowadays their occurrence and effects on several organism, invertebrates, fish, birds, reptiles and also humans are well documented. Because of their action, some of these chemicals have been defined as Endocrine Disrupters Compounds (EDCs) and the public health implications of these EDCs have been the subject of scientific debate. Most interestingly, among those that were noticed to have some influence and effects on the endocrine system were the estrone, the 17β-estradiol, the 17α-estradiol, the estriol, the 17α-ethinylestradiol, the testosterone and the progesterone. This project focused its attention on the 17β-estradiol. Estradiol, or more precisely, 17β-estradiol (also commonly referred to as E2) is a human sex hormone. It belongs to the class of steroid hormones. In spite of the effort to remove these substances from the effluents, the actual wastewater treatment plants are not able to degrade or inactivate these organic compounds that are continually poured in the ecosystem. Through this work a new system for the wastewater treatment was tested, to assess the decrease of the estradiol in the water. It involved the action of Chlorella vulgaris, a fresh water green microalga belonging to the family of the Chlorellaceae. This microorganism was selected for its adaptability and for its photosynthetic efficiency. To detect the decrease of the target compound in the water a CALUX bioassay analysis was chosen. Three different experiments were carried on to pursue the aim of the project. By analysing their results several aspects emerged. It was assessed the presence of EDCs inside the water used to prepare the culture media. C. vulgaris, under controlled conditions, could be efficient for this purpose, although further researches are essential to deepen the knowledge of this complex phenomenon. Ultimately by assessing the toxicity of the effluent against C. vulgaris, it was clear that at determined concentrations, it could affect the normal growth rate of this microorganism.