3 resultados para Checks
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The main goal of this thesis is to report patterns of perceived safety in the context of airport infrastructure, taking the airport of Bologna as reference. Many personal and environmental attributes are investigated to paint the profile of the sensitive passenger and to understand why precise factors of the transit environment are so impactful on the individual. The main analyses are based on a 2014-2015 passengers’ survey, involving almost six thousand of incoming and outgoing passengers. Other reports are used to implement and support the resource. The analysis is carried out by using a combination of Chi-square tests and binary logistic regressions. Findings shows that passengers result to be particularly affected by the perception of airport’s environment (e.g., state and maintenance of facilities, clarity and efficacy of information system, functionality of elevators and escalators), but also by the way how the passenger reaches the airport and the quality of security checks. In relation to such results, several suggestions are provided for the improvement of passenger satisfaction with safety. The attention is then focused on security checkpoints and related operations, described on a theoretical and technical ground. We present an example of how to realize a proper model of the security checks area of Bologna’s airport, with the aim to assess present performances of the system and consequences of potential variations. After a brief introduction to Arena, a widespread simulation software, the existing model is described, pointing out flaws and limitations. Such model is finally updated and changed in order to make it more reliable and more representative of the reality. Different scenarios are tested and results are compared using graphs and tables.
Resumo:
The low-strength concrete is defined as a concrete where the compressive cubic strength is less than 15 MPa. Since the beginning of the last century, many low-strength concrete buildings and bridges have been built all over the world. Being short of deeper study, composite sheets are prohibited in strengthening of low-strength reinforced concrete members (CECS 146; ACI 440). Moreover, there are few relevant information about the long-term behavior and durability of strengthened RC members. This fact undoubtedly limits the use of the composite materials in the strengthening applications, therefore, it is necessary to study the behaviours of low-strength concrete elements strengthened with composite materials (FRP) for the preservation of historic constructions and innovation in the strengthening technology. Deformability is one of criteria in the design of concrete structures, and this for functionality, durability and aesthetics reasons. Civil engineer possibly encounters more deflection problems in the structural design than any other type of problem. Many materials common in structural engineering such as wood, concrete and composite materials, suffer creep; if the creep phenomenon is taken into account, checks for serviceability limit state criteria can become onerous, because the creep deformation in these materials is in the same order of magnitude as the elastic deformation. The thesis presents the results of an experimental study on the long-term behavior of low-strength reinforced concrete beams strengthened with carbon fiber composite sheets (CFRP). The work has investigated the accuracy of the long-term deflection predictions made by some analytical procedures existing in literature, as well as by the most widely used design codes (Eurocode 2, ACI-318, ACI-435).
Resumo:
In this thesis the design of a pressure regulation system for space propulsion engines (electric and cold gas) has been performed. The Bang-Bang Control (BBC) method has been implemented through the open/close command on a solenoid valve, and the mass flow rate of the propellant has been fixed with suitable flow restrictors. At the beginning, research for the comparison between mechanical and electronic (for BBC) pressure regulators has been performed, which resulted in enough advantages for the selection of the second valve type. The major advantage is about the possibility to have a variable outlet pressure with a variable inlet pressure through a simple remote command, while in mechanical pressure regulators the ratio between inlet and outlet pressures must be mechanically settled. Different pressure control schemes have been analyzed, changing number of solenoid valves, flow restrictors and plenums. For each scheme the valve’s frequencies were evaluated with simplified mathematical models and with the use of simulators implemented on Python; the results obtained from those two methods matched quiet well. From all the schemes it was possible to observe varying frequency and duty cycle, for changes in different parameters. This results, after experimental checks, can be used to design the control system for a given total number of cycles that a specific solenoid valve can guarantee. Finally, tests were performed and it was possible to verify the goodness of the control system. Moreover from the tests it was possible to deduce some tips in order to optimize the running of the simulator.