3 resultados para Channel capacity and propagation modelling

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every year, thousand of surgical treatments are performed in order to fix up or completely substitute, where possible, organs or tissues affected by degenerative diseases. Patients with these kind of illnesses stay long times waiting for a donor that could replace, in a short time, the damaged organ or the tissue. The lack of biological alternates, related to conventional surgical treatments as autografts, allografts, e xenografts, led the researchers belonging to different areas to collaborate to find out innovative solutions. This research brought to a new discipline able to merge molecular biology, biomaterial, engineering, biomechanics and, recently, design and architecture knowledges. This discipline is named Tissue Engineering (TE) and it represents a step forward towards the substitutive or regenerative medicine. One of the major challenge of the TE is to design and develop, using a biomimetic approach, an artificial 3D anatomy scaffold, suitable for cells adhesion that are able to proliferate and differentiate themselves as consequence of the biological and biophysical stimulus offered by the specific tissue to be replaced. Nowadays, powerful instruments allow to perform analysis day by day more accurateand defined on patients that need more precise diagnosis and treatments.Starting from patient specific information provided by TC (Computed Tomography) microCT and MRI(Magnetic Resonance Imaging), an image-based approach can be performed in order to reconstruct the site to be replaced. With the aid of the recent Additive Manufacturing techniques that allow to print tridimensional objects with sub millimetric precision, it is now possible to practice an almost complete control of the parametrical characteristics of the scaffold: this is the way to achieve a correct cellular regeneration. In this work, we focalize the attention on a branch of TE known as Bone TE, whose the bone is main subject. Bone TE combines osteoconductive and morphological aspects of the scaffold, whose main properties are pore diameter, structure porosity and interconnectivity. The realization of the ideal values of these parameters represents the main goal of this work: here we'll a create simple and interactive biomimetic design process based on 3D CAD modeling and generative algorithmsthat provide a way to control the main properties and to create a structure morphologically similar to the cancellous bone. Two different typologies of scaffold will be compared: the first is based on Triply Periodic MinimalSurface (T.P.M.S.) whose basic crystalline geometries are nowadays used for Bone TE scaffolding; the second is based on using Voronoi's diagrams and they are more often used in the design of decorations and jewellery for their capacity to decompose and tasselate a volumetric space using an heterogeneous spatial distribution (often frequent in nature). In this work, we will show how to manipulate the main properties (pore diameter, structure porosity and interconnectivity) of the design TE oriented scaffolding using the implementation of generative algorithms: "bringing back the nature to the nature".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi contiene uno studio sperimentale sul comportamento di una sabbia limosa del sottosuolo della laguna veneta e propone un'interpretazione dei risultati sperimentali ottenuti alla luce dei presupposti teorici di un approccio costitutivo avanzato noto come "Plasticità Generalizzata". Il programma sperimentale è consistito nella realizzazione di prove edometriche e prove triassiali su campioni di sabbia provenienti dal sito di Treporti, situato in prossimità della bocca di Lido. La risposta sperimentale, in termini di modulo volumetrico, è stata messa a confronto con i risultati di alcuni studi di letteratura, con particolare riferimento a quelli condotti da Jefferies & Been (2000). La disponibilità di prove di compressione edometrica realizzate nella cella K0 e la conseguente possibilità di valutare il coefficiente di spinta a riposo ha permesso di interpretare le prove in termini di tensione media efficace p' e di verificare l'applicabilità al caso in esame degli approcci di letteratura disponibili, spesso sviluppati a partire da prove di compressione isotropa effettuate in cella triassiale. Il comportamento tenso-deformativo osservato è stato successivamente simulato con un modello costitutivo per sabbie sviluppato nell'ambito della Plasticità Generalizzata. In particolare sono state utilizzate tre diverse formulazioni, che costituiscono un avanzamento dell'iniziale modello costitutivo proposto da Pastor, Zienkiewicz e Chan (1990), basate sull'uso di un parametro di stato del materiale definito rispetto alle condizioni di Stato Critico. Dal confronto tra previsioni del modello e risposta sperimentale è stato possibile individuare la formulazione che meglio simula il comportamento meccanico osservato sia in compressione edometrica sia in prove di taglio ed è stato proposto un set di parametri costitutivi ritenuti rappresentativi del terreno studiato.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents the procedure followed to make a prediction of the critical flutter speed for a composite UAV wing. At the beginning of the study, there was no information available on the materials used for the construction of the wing, and the wing internal structure was unknown. Ground vibration tests were performed in order to detect the structure’s natural frequencies and mode shapes. From tests, it was found that the wing possesses a high stiffness, presenting well separated first bending and torsional natural frequencies. Two finite element models were developed and matched to experimental results. It has been necessary to introduce some assumptions, due to the uncertainties regarding the structure. The matching process was based on natural frequencies’ sensitivity with respect to a change in the mechanical properties of the materials. Once experimental results were met, average material properties were also found. Aerodynamic coefficients for the wing were obtained by means of a CFD software. The same analysis was also conducted when the wing is deformed in its first four mode shapes. A first approximation for flutter critical speed was made with the classical V - g technique. Finally, wing’s aeroelastic behavior was simulated using a coupled CFD/CSD method, obtaining a more accurate flutter prediction. The CSD solver is based on the time integration of modal dynamic equations, requiring the extraction of mode shapes from the previously performed finite-element analysis. Results show that flutter onset is not a risk for the UAV, occurring at velocities well beyond its operative range.