5 resultados para Capillary-like Structures

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work done is about the seismic analysis of an existing reinforced concrete structure that is equipped with a special bracing device. The main objective of the research is to provide a simple procedure that can be followed in order to design the lateral bracing system in such a way that the actual behavior of the structure matches the desired pre-defined objective curve. a great attention is devoted to the internal actions in the structural elements produced by the braces. The device used is called: Crescent shaped braces. This device is a special type of bracing because it has a banana-like geometry that allows the designer to have more control over the stiffness of the structure, especially under cyclic behavior, Unlike the conventional bracing that resists only through its axial stiffness. This device has been installed in a hospital in Italy. However, it has not been exposed to any ground motion so far. Different analysis methods, such as static pushover and dynamic time-history have been used in the analysis of the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of the thesis is to prove the local Lipschitz regularity of the weak solutions to a class of parabolic PDEs modeled on the parabolic p-Laplacian. This result is well known in the Euclidean case and recently has been extended in the Heisenberg group, while higher regularity results are not known in subriemannian parabolic setting. In this thesis we will consider vector fields more general than those in the Heisenberg setting, introducing some technical difficulties. To obtain our main result we will use a Moser-like iteration. Due to the non linearity of the equation, we replace the usual parabolic cylinders with new ones, whose dimension also depends on the L^p norm of the solution. In addition, we deeply simplify the iterative procedure, using the standard Sobolev inequality, instead of the parabolic one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are many natural events that can negatively affect the urban ecosystem, but weather-climate variations are certainly among the most significant. The history of settlements has been characterized by extreme events like earthquakes and floods, which repeat themselves at different times, causing extensive damage to the built heritage on a structural and urban scale. Changes in climate also alter various climatic subsystems, changing rainfall regimes and hydrological cycles, increasing the frequency and intensity of extreme precipitation events (heavy rainfall).  From an hydrological risk perspective, it is crucial to understand future events that could occur and their magnitude in order to design safer infrastructures. Unfortunately, it is not easy to understand future scenarios as the complexity of climate is enormous.  For this thesis, precipitation and discharge extremes were primarily used as data sources. It is important to underline that the two data sets are not separated: changes in rainfall regime, due to climate change, could significantly affect overflows into receiving water bodies. It is imperative that we understand and model climate change effects on water structures to support the development of adaptation strategies.   The main purpose of this thesis is to search for suitable water structures for a road located along the Tione River. Therefore, through the analysis of the area from a hydrological point of view, we aim to guarantee the safety of the infrastructure over time.   The observations made have the purpose to underline how models such as a stochastic one can improve the quality of an analysis for design purposes, and influence choices.