2 resultados para Capacity factor
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
A new method for the evaluation of the efficiency of parabolic trough collectors, called Rapid Test Method, is investigated at the Solar Institut Jülich. The basic concept is to carry out measurements under stagnation conditions. This allows a fast and inexpensive process due to the fact that no working fluid is required. With this approach, the temperature reached by the inner wall of the receiver is assumed to be the stagnation temperature and hence the average temperature inside the collector. This leads to a systematic error which can be rectified through the introduction of a correction factor. A model of the collector is simulated with COMSOL Multipyisics to study the size of the correction factor depending on collector geometry and working conditions. The resulting values are compared with experimental data obtained at a test rig at the Solar Institut Jülich. These results do not match with the simulated ones. Consequentially, it was not pos-sible to verify the model. The reliability of both the model with COMSOL Multiphysics and of the measurements are analysed. The influence of the correction factor on the rapid test method is also studied, as well as the possibility of neglecting it by measuring the receiver’s inner wall temperature where it receives the least amount of solar rays. The last two chapters analyse the specific heat capacity as a function of pressure and tem-perature and present some considerations about the uncertainties on the efficiency curve obtained with the Rapid Test Method.
Resumo:
A proper bond between reinforcement and concrete is key for an appropriate composite action of both materials in reinforced concrete structures. However, to-date limited studies exist on bond of fiber reinforced polymer (FRP) bars in concrete members under flexure. In this paper, the bond strength developed by FRP and steel rebars is evaluated and compared, by testing reinforced concrete beams under three point bending load. The investigation included several beams that were 183 cm long × 15 cm wide × 36 cm deep: many of them were reinforced with sand coated GFRP rebars, while steel was used to reinforce the remaining ones. For each of the reinforcing systems, various different embedded lengths were tested. The beams were tested under a 3-point-bending setup and they were monitored using several measuring devices: LVDTS, potentiometers and strain gauges. Preliminary results show that the GFRP rebars have lower bond capacity than the ones made of steel. Moreover, it was inferred that the embedded lengths suggested by actual code provisions for GFRP rebars are too conservative.