2 resultados para Campi, Giacomo, b. 1846

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lo scopo della tesi è quello di studiare una delle applicazioni della teoria dei campi finiti: il segnale GPS. A questo scopo si descrivono i registri a scorrimento a retroazione lineare (linear feedback shift register, LFSR), dispositivi utili in applicazioni che richiedono la generazione molto rapida di numeri pseudo-casuali. I ricevitori GPS sfruttano il determinismo di questi dispositivi per identificare il satellite da cui proviene il segnale e per sincronizzarsi con esso. Si inizia con una breve introduzione al funzionamento del GPS, poi si studiano i campi finiti: sottocampi, estensioni di campo, gruppo moltiplicativo e costruzione attraverso la riduzione modulo un polinomio irriducibile, fattorizzazione di polinomi, formula per il numero e metodi per la determinazione di polinomi irriducibili, radici di polinomi irriducibili, coniugati, teoria di Galois (automorfismo ed orbite di Frobenius, gruppo e corrispondenza di Galois), traccia, polinomio caratteristico, formula per il numero e metodi per la determinazione di polinomi primitivi. Successivamente si introducono e si esaminano sequenze ricorrenti lineari, loro periodicità, la sequenza risposta impulsiva, il polinomio caratteristico associato ad una sequenza e la sequenza di periodo massimo. Infine, si studiano i registri a scorrimento che generano uno dei segnali GPS. In particolare si esamina la correlazione tra due sequenze. Si mostra che ogni polinomio di grado n-1 a coefficienti nel campo di Galois di ordine 2 può essere rappresentato univocamente in n bit; la somma tra polinomi può essere eseguita come XOR bit-a-bit; la moltiplicazione per piccoli coefficienti richiede al massimo uno shift ed uno XOR. Si conclude con la dimostrazione di un importante risultato: è possibile inizializzare un registro in modo tale da fargli generare una sequenza di periodo massimo poco correlata con ogni traslazione di se stessa.