3 resultados para Calorimeters and calorimetry
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis it has been studied the crystallization and morphology of random copolymers poly (L-lactide-ran-ε-caprolactone) with different compositions of the two monomers since the physical, mechanical, optical and chemical properties of a material depend on this behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) to observe behaviors due to the different compositions of the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-caprolactone) was investigated by polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). Their thermal behavior was observed with crystallization from melt. It was observed that with increasing amounts of PCL in the copolymer, there is a decrease of the thermal degradation. Studies on the crystallization kinetics have shown that small quantities of PCL in the copolymer increase the overall crystallization kinetics and the crystal growth rate which decreases with higher quantities of PCL.
Resumo:
Development and characterization of biopolymers was done in AIJU’s laboratories. AIJU, Technological Institute for children’s products and leisure is based in Spain. The work has the aim to study qualities and characteristics of bioplastics’ blends, in order to design where improvements can be executed. Biopolymers represent a sector with great development possibilities because they combine high technical potential and eco-sustainability. Nowadays, plastic pollution has becoming increasingly concerning, particularly in terms of management of waste. Bioplastics provide an alternative for the disposal of products, reducing the volume of waste and enhancing the end of life recovery. Despite the growing interest in biopolymers there is some gaps that need be filled. The main objective on this work, is the optimization of bioplastics mechanical properties, to find suitable substitutes, as similar as possible to conventional plastics. Firstly, investigations on processability of biomaterials has been deepen since the project deals with toy manufacturing’s sector. Thus, starting from laboratory scale the work aspires to expand industrially. By working with traditional machines, it was notable that, with some limited modifications, the equipment can perform the same functions. Therefore, operational processes do not emerge as an obstacle to the production chain. Secondly, after processing bio-blends, they are characterized by thermal tests (melt flow index, differential scanning calorimetry-DSC, thermogravimetry-TGA) and mechanical tests (traction and flexural tests, Charpy impact, SHORE D hardness and density). While the compatibility does not show relevant results, mechanical improvements has been visualized with addition of more ductile materials. The study was developed by inclusion of sustainable additive VINNEX® to blends. The thesis has highlighted that integration of more flexible materials provides elasticity without compromising bioplastics’ properties.
Resumo:
According to the SM, while Lepton Flavour Violation is allowed in the neutral sector, Charged Lepton Flavour Violation (CLFV) processes are forbidden. The Mu2e Experiment at Fermilab will search for the CLFV process of neutrinoless conversion of a muon into an electron within the field of an Al nucleus. The Mu2e detectors and its state-of-the-art superconducting magnetic system are presented, with special focus put to the electromagnetic crystal calorimeter. The calorimeter is composed by two annular disks, each one hosting pure CsI crystals read-out by custom silicon photomultipliers (SiPMs). The SiPMs are amplified by custom electronics (FEE) and are glued to copper holders in group of 2 SiPMs and 2 FEE boards thus forming a crystal Readout Unit. These Readout Units are being tested at the Quality Control (QC) Station, whose design, realization and operations are presented in this work. The QC Station allows to determine the gain, the response and the photon detection efficiency of each unit and to evaluate the dependence of these parameters from the supply voltage and temperature. The station is powered by two remotely-controlled power supplies and monitored thanks to a Slow Control system which is also illustrated in this work. In this thesis, we also demonstrated that the calorimeter can perform its own measurement of the Mu2e normalization factor, i.e. the counting of the 1.8 MeV photon line produced in nuclear muon captures. A specific calorimeter sub-system called CAPHRI, composed by four LYSO crystals with SiPM readout, has been designed and tested. We simulated the capability of this system on performing this task showing that it can get a faster and more reliable measurement of the muon capture rates with respect to the current Mu2e detector dedicated to this measurement. The characterization of energy resolution and response uniformity of the four procured LYSO crystals are llustrated.