9 resultados para Calabi-Yau manifold

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis, we shall work in the framework of type IIB Calabi-Yau flux compactifications and present a detailed review of moduli stabilisation studying in particular the phenomenological implications of the LARGE-volume scenario (LVS). All the physical relevant quantities such as moduli masses and soft-terms, are computed and compared to the phenomenological constraints that today guide the research. The structure of this thesis is the following. The first chapter introduces the reader to the fundamental concepts that are essentially supersymmetry-breaking, supergravity and string moduli, which represent the basic framework of our discussion. In the second chapter we focus our attention on the subject of moduli stabilisation. Starting from the structure of the supergravity scalar potential, we point out the main features of moduli dynamics, we analyse the KKLT and LARGE-volume scenario and we compute moduli masses and couplings to photons which play an important role in the early-universe evolution since they are strictly related to the decay rate of moduli particles. The third chapter is then dedicated to the calculation of soft-terms, which arise dynamically from gravitational interactions when moduli acquire a non-zero vacuum expectation value (VeV). In the last chapter, finally, we summarize and discuss our results, underling their phenomenological aspects. Moreover, in the last section we analyse the implications of the outcomes for standard cosmology, with particular interest in the cosmological moduli problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the notion of degree forsubmanifolds embedded in an equiregular sub-Riemannian manifold and we provide the definition of their associated area functional. In this setting we prove that the Hausdorff dimension of a submanifold coincides with its degree, as stated by Gromov. Using these general definitions we compute the first variation for surfaces embedded in low dimensional manifolds and we obtain the partial differential equation associated to minimal surfaces. These minimal surfaces have several applications in the neurogeometry of the visual cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main goal of this thesis is to understand and link together some of the early works by Michel Rumin and Pierre Julg. The work is centered around the so-called Rumin complex, which is a construction in subRiemannian geometry. A Carnot manifold is a manifold endowed with a horizontal distribution. If further a metric is given, one gets a subRiemannian manifold. Such data arise in different contexts, such as: - formulation of the second principle of thermodynamics; - optimal control; - propagation of singularities for sums of squares of vector fields; - real hypersurfaces in complex manifolds; - ideal boundaries of rank one symmetric spaces; - asymptotic geometry of nilpotent groups; - modelization of human vision. Differential forms on a Carnot manifold have weights, which produces a filtered complex. In view of applications to nilpotent groups, Rumin has defined a substitute for the de Rham complex, adapted to this filtration. The presence of a filtered complex also suggests the use of the formal machinery of spectral sequences in the study of cohomology. The goal was indeed to understand the link between Rumin's operator and the differentials which appear in the various spectral sequences we have worked with: - the weight spectral sequence; - a special spectral sequence introduced by Julg and called by him Forman's spectral sequence; - Forman's spectral sequence (which turns out to be unrelated to the previous one). We will see that in general Rumin's operator depends on choices. However, in some special cases, it does not because it has an alternative interpretation as a differential in a natural spectral sequence. After defining Carnot groups and analysing their main properties, we will introduce the concept of weights of forms which will produce a splitting on the exterior differential operator d. We shall see how the Rumin complex arises from this splitting and proceed to carry out the complete computations in some key examples. From the third chapter onwards we will focus on Julg's paper, describing his new filtration and its relationship with the weight spectral sequence. We will study the connection between the spectral sequences and Rumin's complex in the n-dimensional Heisenberg group and the 7-dimensional quaternionic Heisenberg group and then generalize the result to Carnot groups using the weight filtration. Finally, we shall explain why Julg required the independence of choices in some special Rumin operators, introducing the Szego map and describing its main properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spinal column performs important functions in the body, including the support of the entire weight of the human body, the ability to orientate the head in space, bending, flexing and rotating the body. Diseases affecting the spine are manifold: the most frequent is scoliosis, which often affects the female population. It is often treated surgically with a very high percentage of failures. The aim of the thesis is to study the role of instrumentation in mechanical failures encountered 12 months after surgery in the treatment of scoliosis. For the purposes of the study, we analyzed specific biomechanical parameters. The pelvic angles determine the position of the pelvis, while the imbalance parameters the structure of the body. We infer other parameters by analyzing the characteristics of the implanted instrumentation. Initially, the anatomy is described of the spine and vertebrae, the equipment used and the possible failures that may occur after surgery. Subsequently, the materials and methods used for the analysis of the above-mentioned parameters for the 61 patients are reported. All data are obtained by the observation of pre and post-operative x-rays with a special program, by reading reports from operators and by medical records. In the fourth chapter, we report the results: the overall failure rate is 60.9%; the types of failures that occurred are rupture of bars and rupture of bars simultaneously to PJK. The most influential parameters on results of the progress of the surgery are the type of material used and the BMI. It is estimated a high percentage of failures in patients treated with implants of cobalt chromium alloys (90.0%). According to the results obtained, it is possible to understand the aspects that in the future should be studied, in order to find a solution to the most frequent surgical failures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo elaborato si presentano alcuni risultati relativi alle equazioni differenziali stocastiche (SDE) lineari. La soluzione di un'equazione differenziale stocastica lineare è un processo stocastico con distribuzione multinormale in generale degenere. Al contrario, nel caso in cui la matrice di covarianza è definita positiva, la soluzione ha densità gaussiana Γ. La Γ è inoltre la soluzione fondamentale dell'operatore di Kolmogorov associato alla SDE. Nel primo capitolo vengono presentate alcune condizioni necessarie e sufficienti che assicurano che la matrice di covarianza sia definita positiva nel caso, più semplice, in cui i coefficienti della SDE sono costanti, e nel caso in cui questi sono dipendenti dal tempo. A questo scopo gioca un ruolo fondamentale la teoria del controllo. In particolare la condizione di Kalman fornisce un criterio operativo per controllare se la matrice di covarianza è definita positiva. Nel secondo capitolo viene presentata una dimostrazione diretta della disuguaglianza di Harnack utilizzando una stima del gradiente dovuta a Li e Yau. Le disuguaglianze di Harnack sono strumenti fondamentali nella teoria delle equazioni differenziali a derivate parziali. Nel terzo capitolo viene proposto un esempio di applicazione della disuguaglianza di Harnack in finanza. In particolare si osserva che la disuguaglianza di Harnack fornisce un limite superiore a priori del valore futuro di un portafoglio autofinanziante in funzione del capitale iniziale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi vengono presentati i piu recenti risultati relativi all'estensione della teoria dei campi localmente covariante a geometrie che permettano di descrivere teorie di campo supersimmetriche. In particolare, si mostra come la definizione assiomatica possa essere generalizzata, mettendo in evidenza le problematiche rilevanti e le tecniche utilizzate in letteratura per giungere ad una loro risoluzione. Dopo un'introduzione alle strutture matematiche di base, varieta Lorentziane e operatori Green-iperbolici, viene definita l'algebra delle osservabili per la teoria quantistica del campo scalare. Quindi, costruendo un funtore dalla categoria degli spazio-tempo globalmente iperbolici alla categoria delle *-algebre, lo stesso schema viene proposto per le teorie di campo bosoniche, purche definite da un operatore Green-iperbolico su uno spazio-tempo globalmente iperbolico. Si procede con lo studio delle supervarieta e alla definizione delle geometrie di background per le super teorie di campo: le strutture di super-Cartan. Associando canonicamente ad ognuna di esse uno spazio-tempo ridotto, si introduce la categoria delle strutture di super-Cartan (ghsCart) il cui spazio-tempo ridotto e globalmente iperbolico. Quindi, si mostra, in breve, come e possibile costruire un funtore da una sottocategoria di ghsCart alla categoria delle super *-algebre e si conclude presentando l'applicazione dei risultati esposti al caso delle strutture di super-Cartan in dimensione 2|2.