3 resultados para CT MRT Lung Ventilation Parameter quantitative ARDS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questa tesi si propone di innovare lo stato dell’arte dei metodi di analisi dell’eterogeneità in lesioni polmonari attualmente utilizzati, affiancando l’analisi funzionale (emodinamica) a quella morfologica, grazie allo sviluppo di nuove feature specifiche. Grazie alla collaborazione tra il Computer Vision Group (CVG) dell’Università di Bologna e l’Unità Operativa di Radiologia dell’IRCCS-IRST di Meldola (Istituto di Ricovero e Cura a Carattere Scientifico – Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori), è stato possibile analizzare un adeguato numero di casi reali di pazienti affetti da lesioni polmonari primitive, effettuando un’analisi dell’eterogeneità sia su sequenze di immagini TC baseline sia contrast-enhanced, consentendo quindi un confronto tra eterogeneità morfologica e funzionale. I risultati ottenuti sono infine discussi sulla base del confronto con le considerazioni di natura clinica effettuate in cieco da due esperti radiologi dell’IRCCS-IRST.
Resumo:
Numerous types of acute respiratory failure are routinely treated using non-invasive ventilatory support (NIV). Its efficacy is well documented: NIV lowers intubation and death rates in various respiratory disorders. It can be delivered by means of face masks or head helmets. Currently the scientific community’s interest about NIV helmets is mostly focused on optimising the mixing between CO2 and clean air and on improving patient comfort. To this end, fluid dynamic analysis plays a particularly important role and a two- pronged approach is frequently employed. While on one hand numerical simulations provide information about the entire flow field and different geometries, they exhibit require huge temporal and computational resources. Experiments on the other hand help to validate simulations and provide results with a much smaller time investment and thus remain at the core of research in fluid dynamics. The aim of this thesis work was to develop a flow bench and to utilise it for the analysis of NIV helmets. A flow test bench and an instrumented mannequin were successfully designed, produced and put into use. Experiments were performed to characterise the helmet interface in terms of pressure drop and flow rate drop over different inlet flow rates and outlet pressure set points. Velocity measurements by means of Particle Image Velocimetry were performed. Pressure drop and flow rate characteristics from experiments were contrasted with CFD data and sufficient agreement was observed between both numerical and experimental results. PIV studies permitted qualitative and quantitative comparisons with numerical simulation data and offered a clear picture of the internal flow behaviour, aiding the identification of coherent flow features.
Resumo:
Radiation dose in x-ray computed tomography (CT) has become a topic of great interest due to the increasing number of CT examinations performed worldwide. In fact, CT scans are responsible of significant doses delivered to the patients, much larger than the doses due to the most common radiographic procedures. This thesis work, carried out at the Laboratory of Medical Technology (LTM) of the Rizzoli Orthopaedic Institute (IOR, Bologna), focuses on two primary objectives: the dosimetric characterization of the tomograph present at the IOR and the optimization of the clinical protocol for hip arthroplasty. In particular, after having verified the reliability of the dose estimates provided by the system, we compared the estimates of the doses delivered to 10 patients undergoing CT examination for the pre-operative planning of hip replacement with the Diagnostic Reference Level (DRL) for an osseous pelvis examination. Out of 10 patients considered, only for 3 of them the doses were lower than the DRL. Therefore, the necessity to optimize the clinical protocol emerged. This optimization was investigated using a human femur from a cadaver. Quantitative analysis and comparison of 3D reconstructions were made, after having performed manual segmentation of the femur from different CT acquisitions. Dosimetric simulations of the CT acquisitions on the femur were also made and associated to the accuracy of the 3D reconstructions, to analyse the optimal combination of CT acquisition parameters. The study showed that protocol optimization both in terms of Hausdorff distance and in terms of effective dose (ED) to the patient may be realized simply by modifying the value of the pitch in the protocol, by choosing between 0.98 and 1.37.