3 resultados para CLOUD POINT CURVES
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
This thesis project aims to the development of an algorithm for the obstacle detection and the interaction between the safety areas of an Automated Guided Vehicles (AGV) and a Point Cloud derived map inside the context of a CAD software. The first part of the project focuses on the implementation of an algorithm for the clipping of general polygons, with which has been possible to: construct the safety areas polygon, derive the sweep of this areas along the navigation path performing a union and detect the intersections with line or polygon representing the obstacles. The second part is about the construction of a map in terms of geometric entities (lines and polygons) starting from a point cloud given by the 3D scan of the environment. The point cloud is processed using: filters, clustering algorithms and concave/convex hull derived algorithms in order to extract line and polygon entities representing obstacles. Finally, the last part aims to use the a priori knowledge of possible obstacle detections on a given segment, to predict the behavior of the AGV and use this prediction to optimize the choice of the vehicle's assigned velocity in that segment, minimizing the travel time.
Resumo:
Modern society is now facing significant difficulties in attempting to preserve its architectural heritage. Numerous challenges arise consequently when it comes to documentation, preservation and restoration. Fortunately, new perspectives on architectural heritage are emerging owing to the rapid development of digitalization. Therefore, this presents new challenges for architects, restorers and specialists. Additionally, this has changed the way they approach the study of existing heritage, changing from conventional 2D drawings in response to the increasing requirement for 3D representations. Recently, Building Information Modelling for historic buildings (HBIM) has escalated as an emerging trend to interconnect geometrical and informational data. Currently, the latest 3D geomatics techniques based on 3D laser scanners with enhanced photogrammetry along with the continuous improvement in the BIM industry allow for an enhanced 3D digital reconstruction of historical and existing buildings. This research study aimed to develop an integrated workflow for the 3D digital reconstruction of heritage buildings starting from a point cloud. The Pieve of San Michele in Acerboli’s Church in Santarcangelo Di Romagna (6th century) served as the test bed. The point cloud was utilized as an essential referential to model the BIM geometry using Autodesk Revit® 2022. To validate the accuracy of the model, Deviation Analysis Method was employed using CloudCompare software to determine the degree of deviation between the HBIM model and the point cloud. The acquired findings showed a very promising outcome in the average distance between the HBIM model and the point cloud. The conducted approach in this study demonstrated the viability of producing a precise BIM geometry from point clouds.
Resumo:
La classificazione di dati geometrici 3D come point cloud è un tema emergente nell'ambito della visione artificiale in quanto trova applicazione in molteplici contesti di guida autonoma, robotica e realtà aumentata. Sebbene nel mercato siano presenti una grande quantità di sensori in grado di ottenere scansioni reali, la loro annotazione costituisce un collo di bottiglia per la generazione di dataset. Per sopperire al problema si ricorre spesso alla domain adaptation sfruttando dati sintetici annotati. Questo elaborato si pone come obiettivo l'analisi e l'implementazione di metodi di domain adaptation per classificazione di point cloud mediante pseudo-labels. In particolare, sono stati condotti esperimenti all'interno del framework RefRec valutando la possibilità di sostituire nuove architetture di deep learning al modello preesistente. Tra queste, Transformer con mascheramento dell'input ha raggiunto risultati superiori allo stato dell'arte nell'adattamento da dati sintetici a reali (ModelNet->ScanNet) esaminato in questa tesi.