3 resultados para Bulk segregant analysis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Questa dissertazione esamina le sfide e i limiti che gli algoritmi di analisi di grafi incontrano in architetture distribuite costituite da personal computer. In particolare, analizza il comportamento dell'algoritmo del PageRank così come implementato in una popolare libreria C++ di analisi di grafi distribuiti, la Parallel Boost Graph Library (Parallel BGL). I risultati qui presentati mostrano che il modello di programmazione parallela Bulk Synchronous Parallel è inadatto all'implementazione efficiente del PageRank su cluster costituiti da personal computer. L'implementazione analizzata ha infatti evidenziato una scalabilità negativa, il tempo di esecuzione dell'algoritmo aumenta linearmente in funzione del numero di processori. Questi risultati sono stati ottenuti lanciando l'algoritmo del PageRank della Parallel BGL su un cluster di 43 PC dual-core con 2GB di RAM l'uno, usando diversi grafi scelti in modo da facilitare l'identificazione delle variabili che influenzano la scalabilità. Grafi rappresentanti modelli diversi hanno dato risultati differenti, mostrando che c'è una relazione tra il coefficiente di clustering e l'inclinazione della retta che rappresenta il tempo in funzione del numero di processori. Ad esempio, i grafi Erdős–Rényi, aventi un basso coefficiente di clustering, hanno rappresentato il caso peggiore nei test del PageRank, mentre i grafi Small-World, aventi un alto coefficiente di clustering, hanno rappresentato il caso migliore. Anche le dimensioni del grafo hanno mostrato un'influenza sul tempo di esecuzione particolarmente interessante. Infatti, si è mostrato che la relazione tra il numero di nodi e il numero di archi determina il tempo totale.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
In questo lavoro di tesi è presentato un metodo per lo studio della compartimentalizzazione dell’acqua in cellule biologiche, mediante lo studio dell’autodiffusione delle molecole d’acqua tramite uno strumento NMR single-sided. Le misure sono state eseguite nel laboratorio NMR all’interno del DIFA di Bologna. Sono stati misurati i coefficienti di autodiffusione di tre campioni in condizione bulk, ottenendo risultati consistenti con la letteratura. È stato poi analizzato un sistema cellulare modello, Saccharomyces cerevisiae, allo stato solido, ottimizzando le procedure per l’ottenimento di mappe di correlazione 2D, aventi come assi il coefficiente di autodiffusione D e il tempo di rilassamento trasversale T2. In questo sistema l’acqua è confinata e l’autodiffusione è ristretta dalle pareti cellulari, si parla quindi di coefficiente di autodiffusione apparente, Dapp. Mediante le mappe sono state individuate due famiglie di nuclei 1H. Il campione è stato poi analizzato in diluizione in acqua distillata, confermando la separazione del segnale in due distinte famiglie. L’utilizzo di un composto chelato, il CuEDTA, ha permesso di affermare che la famiglia con il Dapp maggiore corrisponde all’acqua esterna alle cellule. L’analisi dei dati ottenuti sulle due famiglie al variare del tempo lasciato alle molecole d’acqua per la diffusione hanno portato alla stima del raggio dei due compartimenti: r=2.3±0.2µm per l’acqua extracellulare, r=0.9±0.1µm per quella intracellulare, che è probabilmente acqua scambiata tra gli organelli e il citoplasma. L’incertezza associata a tali stime tiene conto soltanto dell’errore nel calcolo dei parametri liberi del fit dei dati, è pertanto una sottostima, dovuta alle approssimazioni connesse all’utilizzo di equazioni valide per un sistema poroso costituito da pori sferici connessi non permeabili. Gli ordini di grandezza dei raggi calcolati sono invece consistenti con quelli osservabili dalle immagini ottenute con il microscopio ottico.