7 resultados para Boltzmann

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have extended the Boltzmann code CLASS and studied a specific scalar tensor dark energy model: Induced Gravity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi è una panoramica di alcuni concetti base su cui si fonda la dinamica delle galassie. Nel primo capitolo vengono messi in evidenza i concetti più generali dal punto di vista morfologico- strutturale attraverso la classificazione di Hubble. Nel secondo capitolo si mette in evidenza come un sistema possa essere definito non collisionale (attraverso la stima del tempo di rilassamento ai due corpi) e le conseguenze che ne derivano come, per esempio, l' anisotropia dello stesso sistema che conferisce alla galassia la sua classica forma “schiacciata”. Vengono poi descritti la collisional Boltzmann equation (CBE) e il teorema del viriale in forma tensoriale . Integrando la CBE nello spazio delle velocità otteniamo tre equazioni note come equazioni di Jeans: queste hanno una struttura del tutto identica a quelle della fluidodinamica ma con alcune eccezioni significative che non permettono di descrivere completamente la dinamica delle galassie attraverso la fluidodinamica. Il terzo capitolo è un excursus generale sulle galassie ellittiche: dalla loro struttura alla loro dinamica. Dall' applicazione del teorema del viriale ad un sistema ellittico si può notare come la forma “schiacciata” delle galassie sia una conseguenza dell' anisotropia del sistema e sia dovuta solo in minima parte alla rotazione. Successivamente viene presentato un modello galattico (quello di Jeans), che ci permette di calcolare una distribuzione di massa del sistema attraverso un' equazione che purtroppo non ha soluzione unica e quindi ci rende impossibile calcolare il rapporto massa- luminosità. Infine viene descritto il fundamental plane che è una relazione empirica tale per cui ad ogni galassia viene associato un determinato valore di raggio effettivo, dispersione di velocità e luminosità. Nel quarto ed ultimo capitolo viene trattata la dinamica delle parti più esterne di una galassia: disco e bracci. La dinamica del disco è descritta attraverso la curva di rotazione che, come vedremo, ha delle caratteristiche abbastanza diverse da una curva di rotazione di tipo kepleriano (quella che ad esempio descrive l' andamento della velocità in funzione della distanza nel nostro sistema solare). Infine viene descritta la dinamica dei bracci e la teoria delle onde di densità di Lin e Shu, due astronomi americani, che riesce a descrivere compiutamente la nascita e l' evoluzione dei bracci a spirale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Una stella non è un sistema in "vero" equilibrio termodinamico: perde costantemente energia, non ha una composizione chimica costante nel tempo e non ha nemmeno una temperatura uniforme. Ma, in realtà, i processi atomici e sub-atomici avvengono in tempi così brevi, rispetto ai tempi caratteristici dell'evoluzione stellare, da potersi considerare sempre in equilibrio. Le reazioni termonucleari, invece, avvengono su tempi scala molto lunghi, confrontabili persino con i tempi di evoluzione stellare. Inoltre il gradiente di temperatura è dell'ordine di 1e-4 K/cm e il libero cammino medio di un fotone è circa di 1 cm, il che ci permette di assumere che ogni strato della stella sia uno strato adiabatico a temperatura uniforme. Di conseguenza lo stato della materia negli interni stellari è in una condizione di ``quasi'' equilibrio termodinamico, cosa che ci permette di descrivere la materia attraverso le leggi della Meccanica Statistica. In particolare lo stato dei fotoni è descritto dalla Statistica di Bose-Einstein, la quale conduce alla Legge di Planck; lo stato del gas di ioni ed elettroni non degeneri è descritto dalla Statistica di Maxwell-Boltzmann; e, nel caso di degenerazione, lo stato degli elettroni è descritto dalla Statistica di Fermi-Dirac. Nella forma più generale, l'equazione di stato dipende dalla somma dei contributi appena citati (radiazione, gas e degenerazione). Vedremo prima questi contributi singolarmente, e dopo li confronteremo tra loro, ottenendo delle relazioni che permettono di determinare quale legge descrive lo stato fisico di un plasma stellare, semplicemente conoscendone temperatura e densità. Rappresentando queste condizioni su un piano $\log \rho \-- \log T$ possiamo descrivere lo stato del nucleo stellare come un punto, e vedere in che stato è la materia al suo interno, a seconda della zona del piano in cui ricade. È anche possibile seguire tutta l'evoluzione della stella tracciando una linea che mostra come cambia lo stato della materia nucleare nelle diverse fasi evolutive. Infine vedremo come leggi quantistiche che operano su scala atomica e sub-atomica siano in grado di influenzare l'evoluzione di sistemi enormi come quelli stellari: infatti la degenerazione elettronica conduce ad una massa limite per oggetti completamente degeneri (in particolare per le nane bianche) detta Massa di Chandrasekhar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studio dei sistemi termodinamici che possono accedere a stati di inversione di popolazione. Confronto dei risultati ottenuti studiando questi sistemi sia con l'approccio di Boltzmann che con quello di Gibbs alla meccanica statistica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il seguente lavoro di tesi descrive un modello fisico di nana bianca all'equilibrio partendo da dati empirici tipici per tali stelle. Si schematizza la stella come una sfera di gas He completamente ionizzato di densità uniforme, a temperatura T=const e soggetta ad un potenziale gravitazionale centrale. Il gas si costituisce di una parte degenere relativistica (elettroni) ed una parte classica ideale (gli ioni). Si procede ricavando le relazioni essenziali per determinare le proprietà di un gas di Fermi degenere relativistico, mostrando come, al limite di Boltzmann, descrivano anche il caso classico. La trattazione teorica è progressivamente supportata dalle stime dei parametri caratteristici delle due componenti del gas per verificare le loro condizioni fisiche e stimare l'importanza dei rispettivi contributi all'intero sistema. Si procede quindi all'esposizione dell'equilibrio tra pressione degenere ed attrazione gravitazionale ponendo particolare attenzione alla relazione raggio-massa. Infine si discutono le condizioni entro le quali un sistema fisico con tali caratteristiche può sussistere, con esplicito riferimento al limite di Chandrasekhar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questa tesi si vuole fornire una descrizione generale delle dinamiche delle galassie ellittiche e a spirale. Nel primo capitolo si danno informazioni generali sulle grandezze che caratterizzano le galassie e come esse vengono classificate. Nel secondo capitolo si espone il concetto di sistema collisionale, si fa notare come le galassie risultino essere sistemi non collisionali e come questo porti delle semplificazioni nella trattazione di questi oggetti e ne spieghi alcune caratteristiche. Si prosegue andando a considerare le equazioni che descrivono il moto (equazione non collisionale di Boltzmann, equazioni di Jeans, teorema del viriale in forma tensoriale) e le informazioni che si possono ricavare. Nel terzo capitolo ci si concentra sulle galassie ellittiche e sulle principali leggi che le descrivono e dalle quali è possibile ottenere stime riguardo distanza e dimensioni. Il quarto e ultimo capitolo è incentrato sulle galassie a spirale e in particolare sulla dinamica del disco, e come si è giunti all'ipotesi dell'esistenza della materia oscura, e sulla dinamica dei bracci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi si focalizza sullo studio dei modelli fisico-matematici attualmente in uso per la simulazione di fluidi al calcolatore con l’obiettivo di fornire nozioni di base e avanzate sull’utilizzo di tali metodi. La trattazione ha lo scopo di facilitare la comprensione dei principi su cui si fonda la simulazione di fluidi e rappresenta una base per la creazione di un proprio simulatore. E’ possibile studiare le caratteristiche di un fluido in movimento mediante due approcci diversi, l’approccio lagrangiano e l’approccio euleriano. Mentre l’approccio lagrangiano ha lo scopo di conoscere il valore, nel tempo, di una qualsiasi proprietà di ciascuna particella che compone il fluido, l’approccio euleriano, fissato uno o più punti del volume di spazio occupato da quest’ultimo, vuole studiare quello che accade, nel tempo, in quei punti. In particolare, questa tesi approfondisce lo studio delle equazioni di Navier-Stokes, approcciandosi al problema in maniera euleriana. La soluzione numerica del sistema di equazioni differenziali alle derivate parziali derivante dalle equazioni sopracitate, approssima la velocità del fluido, a partire dalla quale è possibile risalire a tutte le grandezze che lo caratterizzano. Attenzione viene riservata anche ad un modello facente parte dell’approccio semi-lagrangiano, il Lattice Boltzmann, considerato una via di mezzo tra i metodi puramente euleriani e quelli lagrangiani, che si basa sulla soluzione dell’equazione di Boltzmann mediante modelli di collisione di particelle. Infine, analogamente al metodo di Lattice Boltzmann, viene trattato il metodo Smoothed Particles Hydrodynamics, tipicamente lagrangiano, secondo il quale solo le proprietà delle particelle comprese dentro il raggio di una funzione kernel, centrata nella particella di interesse, influenzano il valore della particella stessa. Un resoconto pratico della teoria trattata viene dato mediante delle simulazioni realizzate tramite il software Blender 2.76b.