2 resultados para Bion, of Phlossa near Smyrna.
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
X-ray absorption spectroscopy (XAS) is a powerful means of investigation of structural and electronic properties in condensed -matter physics. Analysis of the near edge part of the XAS spectrum, the so – called X-ray Absorption Near Edge Structure (XANES), can typically provide the following information on the photoexcited atom: - Oxidation state and coordination environment. - Speciation of transition metal compounds. - Conduction band DOS projected on the excited atomic species (PDOS). Analysis of XANES spectra is greatly aided by simulations; in the most common scheme the multiple scattering framework is used with the muffin tin approximation for the scattering potential and the spectral simulation is based on a hypothetical, reference structure. This approach has the advantage of requiring relatively little computing power but in many cases the assumed structure is quite different from the actual system measured and the muffin tin approximation is not adequate for low symmetry structures or highly directional bonds. It is therefore very interesting and justified to develop alternative methods. In one approach, the spectral simulation is based on atomic coordinates obtained from a DFT (Density Functional Theory) optimized structure. In another approach, which is the object of this thesis, the XANES spectrum is calculated directly based on an ab – initio DFT calculation of the atomic and electronic structure. This method takes full advantage of the real many-electron final wavefunction that can be computed with DFT algorithms that include a core-hole in the absorbing atom to compute the final cross section. To calculate the many-electron final wavefunction the Projector Augmented Wave method (PAW) is used. In this scheme, the absorption cross section is written in function of several contributions as the many-electrons function of the finale state; it is calculated starting from pseudo-wavefunction and performing a reconstruction of the real-wavefunction by using a transform operator which contains some parameters, called partial waves and projector waves. The aim of my thesis is to apply and test the PAW methodology to the calculation of the XANES cross section. I have focused on iron and silicon structures and on some biological molecules target (myoglobin and cytochrome c). Finally other inorganic and biological systems could be taken into account for future applications of this methodology, which could become an important improvement with respect to the multiscattering approach.
Resumo:
This work aims to evaluate the reliability of these levee systems, calculating the probability of “failure” of determined levee stretches under different loads, using probabilistic methods that take into account the fragility curves obtained through the Monte Carlo Method. For this study overtopping and piping are considered as failure mechanisms (since these are the most frequent) and the major levee system of the Po River with a primary focus on the section between Piacenza and Cremona, in the lower-middle area of the Padana Plain, is analysed. The novelty of this approach is to check the reliability of individual embankment stretches, not just a single section, while taking into account the variability of the levee system geometry from one stretch to another. This work takes also into consideration, for each levee stretch analysed, a probability distribution of the load variables involved in the definition of the fragility curves, where it is influenced by the differences in the topography and morphology of the riverbed along the sectional depth analysed as it pertains to the levee system in its entirety. A type of classification is proposed, for both failure mechanisms, to give an indication of the reliability of the levee system based of the information obtained by the fragility curve analysis. To accomplish this work, an hydraulic model has been developed where a 500-year flood is modelled to determinate the residual hazard value of failure for each stretch of levee near the corresponding water depth, then comparing the results with the obtained classifications. This work has the additional the aim of acting as an interface between the world of Applied Geology and Environmental Hydraulic Engineering where a strong collaboration is needed between the two professions to resolve and improve the estimation of hydraulic risk.