5 resultados para Biomedical informatics

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a CMOS Amplifier with High Common Mode rejection designed in UMC 130nm technology. The goal is to achieve a high amplification factor for a wide range of biological signals (with frequencies in the range of 10Hz-1KHz) and to reject the common-mode noise signal. It is here presented a Data Acquisition System, composed of a Delta-Sigma-like Modulator and an antenna, that is the core of a portable low-complexity radio system; the amplifier is designed in order to interface the data acquisition system with a sensor that acquires the electrical signal. The Modulator asynchronously acquires and samples human muscle activity, by sending a Quasi-Digital pattern that encodes the acquired signal. There is only a minor loss of information translating the muscle activity using this pattern, compared to an encoding technique which uses astandard digital signal via Impulse-Radio Ultra-Wide Band (IR-UWB). The biological signals, needed for Electromyographic analysis, have an amplitude of 10-100μV and need to be highly amplified and separated from the overwhelming 50mV common mode noise signal. Various tests of the firmness of the concept are presented, as well the proof that the design works even with different sensors, such as Radiation measurement for Dosimetry studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to estimate depth through supervised deep learning-based stereo methods, it is necessary to have access to precise ground truth depth data. While the gathering of precise labels is commonly tackled by deploying depth sensors, this is not always a viable solution. For instance, in many applications in the biomedical domain, the choice of sensors capable of sensing depth at small distances with high precision on difficult surfaces (that present non-Lambertian properties) is very limited. It is therefore necessary to find alternative techniques to gather ground truth data without having to rely on external sensors. In this thesis, two different approaches have been tested to produce supervision data for biomedical images. The first aims to obtain input stereo image pairs and disparities through simulation in a virtual environment, while the second relies on a non-learned disparity estimation algorithm in order to produce noisy disparities, which are then filtered by means of hand-crafted confidence measures to create noisy labels for a subset of pixels. Among the two, the second approach, which is referred in literature as proxy-labeling, has shown the best results and has even outperformed the non-learned disparity estimation algorithm used for supervision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we discuss the expansion of an existing project, called CHIMeRA, which is a comprehensive biomedical network, and the analysis of its sub-components by using graph theory. We describe how it is structured internally, what are the existing databases from which it retrieves information and what machine learning techniques are used in order to produce new knowledge. We also introduce a new technique for graph exploration that is aimed to speed-up the network cover time under the condition that the analyzed graph is stellar; if this condition is satisfied, the improvement in the performance compared to the conventional exploration technique is extremely appealing. We show that the stellar structure is highly recurrent for sub-networks in CHIMeRA generated by queries, which made this technique even more interesting. Finally, we describe the convenience in using the CHIMeRA network for research purposes and what it could become in a very near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays the idea of injecting world or domain-specific structured knowledge into pre-trained language models (PLMs) is becoming an increasingly popular approach for solving problems such as biases, hallucinations, huge architectural sizes, and explainability lack—critical for real-world natural language processing applications in sensitive fields like bioinformatics. One recent work that has garnered much attention in Neuro-symbolic AI is QA-GNN, an end-to-end model for multiple-choice open-domain question answering (MCOQA) tasks via interpretable text-graph reasoning. Unlike previous publications, QA-GNN mutually informs PLMs and graph neural networks (GNNs) on top of relevant facts retrieved from knowledge graphs (KGs). However, taking a more holistic view, existing PLM+KG contributions mainly consider commonsense benchmarks and ignore or shallowly analyze performances on biomedical datasets. This thesis start from a propose of a deep investigation of QA-GNN for biomedicine, comparing existing or brand-new PLMs, KGs, edge-aware GNNs, preprocessing techniques, and initialization strategies. By combining the insights emerged in DISI's research, we introduce Bio-QA-GNN that include a KG. Working with this part has led to an improvement in state-of-the-art of MCOQA model on biomedical/clinical text, largely outperforming the original one (+3.63\% accuracy on MedQA). Our findings also contribute to a better understanding of the explanation degree allowed by joint text-graph reasoning architectures and their effectiveness on different medical subjects and reasoning types. Codes, models, datasets, and demos to reproduce the results are freely available at: \url{https://github.com/disi-unibo-nlp/bio-qagnn}.