3 resultados para Biogeochemical data field data
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Network Theory is a prolific and lively field, especially when it approaches Biology. New concepts from this theory find application in areas where extensive datasets are already available for analysis, without the need to invest money to collect them. The only tools that are necessary to accomplish an analysis are easily accessible: a computing machine and a good algorithm. As these two tools progress, thanks to technology advancement and human efforts, wider and wider datasets can be analysed. The aim of this paper is twofold. Firstly, to provide an overview of one of these concepts, which originates at the meeting point between Network Theory and Statistical Mechanics: the entropy of a network ensemble. This quantity has been described from different angles in the literature. Our approach tries to be a synthesis of the different points of view. The second part of the work is devoted to presenting a parallel algorithm that can evaluate this quantity over an extensive dataset. Eventually, the algorithm will also be used to analyse high-throughput data coming from biology.
Resumo:
Over the time, Twitter has become a fundamental source of information for news. As a one step forward, researchers have tried to analyse if the tweets contain predictive power. In the past, in financial field, a lot of research has been done to propose a function which takes as input all the tweets for a particular stock or index s, analyse them and predict the stock or index price of s. In this work, we take an alternative approach: using the stock price and tweet information, we investigate following questions. 1. Is there any relation between the amount of tweets being generated and the stocks being exchanged? 2. Is there any relation between the sentiment of the tweets and stock prices? 3. What is the structure of the graph that describes the relationships between users?
Resumo:
Over the past twenty years, new technologies have required an increasing use of mathematical models in order to understand better the structural behavior: finite element method is the one mostly used. However, the reliability of this method applied to different situations has to be tried each time. Since it is not possible to completely model the reality, different hypothesis must be done: these are the main problems of FE modeling. The following work deals with this problem and tries to figure out a way to identify some of the unknown main parameters of a structure. This main research focuses on a particular path of study and development, but the same concepts can be applied to other objects of research. The main purpose of this work is the identification of unknown boundary conditions of a bridge pier using the data acquired experimentally with field tests and a FEM modal updating process. This work doesn’t want to be new, neither innovative. A lot of work has been done during the past years on this main problem and many solutions have been shown and published. This thesis just want to rework some of the main aspects of the structural optimization process, using a real structure as fitting model.