2 resultados para Bicycle helmet

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this master’s thesis is to study the risky situations of the cyclist when they interact with road infrastructure and other road users as well as the influence of speed on safety. This research activity is linked with the SAFERUP (Sustainable, Accessible, Resilient, and Smart Urban Pavement) European funded project where one of the doctoral candidate has performed experiments on the bicycle simulation at the Gustave Eiffel university in the PICS-L laboratory (Paris) and instrumented bicycle at the Stockholm (Sweden). The approach of the experiment was to hire a number of people who have participated in the riding of the Instrumented bicycle (Stockholm) and bicycle simulator (PICS-L) which were developed by attaching different sensors and devices to measure important parameters of the bicycle riding and their data was collected to analysis in order to understand the behavior of the cyclist to improve the safety. In addition, a mobile eye tracker wore by participants to record the real experiment scenario, and after the end of the trip, each participant shared their remarks regarding their experience of bicycle riding according to different portions of the road infrastructure. In this research main focus is to analyze the relevant data such as speed profiles, video recordings and questionnaire surveys from the instrumented bicycle experiment. In fact, critical situations, where there was a higher probability, were compared with the subjective evaluation of the participant to be conscious of the issues related to the safety and comfort of the cyclist in different road characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous types of acute respiratory failure are routinely treated using non-invasive ventilatory support (NIV). Its efficacy is well documented: NIV lowers intubation and death rates in various respiratory disorders. It can be delivered by means of face masks or head helmets. Currently the scientific community’s interest about NIV helmets is mostly focused on optimising the mixing between CO2 and clean air and on improving patient comfort. To this end, fluid dynamic analysis plays a particularly important role and a two- pronged approach is frequently employed. While on one hand numerical simulations provide information about the entire flow field and different geometries, they exhibit require huge temporal and computational resources. Experiments on the other hand help to validate simulations and provide results with a much smaller time investment and thus remain at the core of research in fluid dynamics. The aim of this thesis work was to develop a flow bench and to utilise it for the analysis of NIV helmets. A flow test bench and an instrumented mannequin were successfully designed, produced and put into use. Experiments were performed to characterise the helmet interface in terms of pressure drop and flow rate drop over different inlet flow rates and outlet pressure set points. Velocity measurements by means of Particle Image Velocimetry were performed. Pressure drop and flow rate characteristics from experiments were contrasted with CFD data and sufficient agreement was observed between both numerical and experimental results. PIV studies permitted qualitative and quantitative comparisons with numerical simulation data and offered a clear picture of the internal flow behaviour, aiding the identification of coherent flow features.