1 resultado para Bellingshausen Sea, central axis of trough, middle shelf
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the present study, we have tried to expand our knowledge about the endocrine mechanisms that regulate feeding and growth in cultured fish, which could be relevant for the improvement of fish farming conditions and feeding strategies. In order to reach this goal, we have investigated some orexigenic hormones, Neuropeptide Y (NPY) and the paralogues of Agouti-related protein, (AgRP1, AgRP2) in Solea senegalensis, an important species for Mediterranean aquaculture. We focused on hormones synchronization to different feeding regimes (diurnal vs nocturnal and random feeding) and photoperiod (light-dark cycle vs constant darkness). Therefore, the achieved results could also be relevant from a chronobiological perspective. Solea senegalensis specimen were reared in two different photoperiods, i.e.LD Light-Dark conditions as well as in DD conditions (constant darkness) along with different feeding regimes (fed at ML, Med and RND times), so to determine if mRNA expression of orexigenic hormones (NPY, AgRP1 and AgRP2) are entrained by feeding time and/or photoperiod. Our results show an independence of npy mRNA expression from the feeding time and suggest an endogenous control of npy expression in telencephalon of sole, while in optice tectum, npy expression could be entrained by the light-dark cycle. Our results on Senegalese sole AgRP1 and AgRP2 showed the same pattern of expression, indicating that expression of AgRPs is related to photoperiod in optic tectum, instead to feeding time. However the involvement of AgRP1 and AgRP2 in feeding behaviour should not be discarded in sole, as further research will be carried out with specimens maintained under different fasting conditions. our results reinforce the role of the telencephalon as the main neural area involved in the neuroendocrine control of food intake in fish, where endogenous NPY rhythms have been found, while diencephalon statistical variations weren’t observed suggesting that this brain area could be less involved in the neuroendocrine control of food intake in fish than previously thought.