2 resultados para Bayesiana
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L'argomento di questa tesi è la multisensorialità sensoriale. L'obbiettivo che abbiamo perseguito è stato quello di utilizzare un modello sviluppato in precedenza per effettuare un'analisi di sensitività e capire il ruolo che hanno i vari fattori per lo sviluppo della rete neurale. Inoltre abbiamo cercato di mostrare come effettivamente tale modello, come da letteratura, effettui una stima bayesiana. Al termine di questo lavoro si è evidenziata la forte influenza degli stimoli cross-modali nell'adattamento automatico della rete verso stimoli più precisi e del ventriloquismo necessario a ponderare gli stimoli a seconda del loro grado di affidabilità. Inoltre è stato dimostrato che attraverso l'utilizzo di una regola di apprendimento realistica, la rete neurale può imparare la funzione di verosimiglianza. Uno stimatore bayesiano di questo tipo riesce a rappresentare realisticamente l'integrazione multisensoriale che il nostro cervello deve intraprendere quando si trova davanti a più stimoli di natura sensoriale diversa. Molto interessanti anche gli sviluppi possibili di questo progetto che verranno accennati nelle ultime parti di questa tesi.
Resumo:
L’obiettivo di tutto il mio lavoro è stato quello di misurare le sezioni d’urto di produzione dei bosoni deboli W ± e Z nei loro decadimenti leptonici (e, μ) coi dati raccolti dal rivelatore ATLAS a LHC con un’energia del centro di massa di √s = 13 TeV relativi all’estate 2015. Gli eventi selezionati sono gli stessi di quelli del recente articolo della Collaborazione ATLAS sullo stesso argomento, in modo anche da poter operare un confronto tra i risultati ottenuti. Confronto peraltro necessario, poichè i risultati sono stati ottenuti con due metodologie differenti: tradizionale (classica) per l’articolo, bayesiana in questa tesi. L’approccio bayesiano permette di combinare i vari canali e di trattare gli effetti sistematici in modo del tutto naturale. I risultati ottenuti sono in ottimo accordo con le predizioni dello Standard Model e con quelli pubblicati da ATLAS.