3 resultados para Bayesian hierarchical model
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’obiettivo di tutto il mio lavoro è stato quello di misurare le sezioni d’urto di produzione dei bosoni deboli W ± e Z nei loro decadimenti leptonici (e, μ) coi dati raccolti dal rivelatore ATLAS a LHC con un’energia del centro di massa di √s = 13 TeV relativi all’estate 2015. Gli eventi selezionati sono gli stessi di quelli del recente articolo della Collaborazione ATLAS sullo stesso argomento, in modo anche da poter operare un confronto tra i risultati ottenuti. Confronto peraltro necessario, poichè i risultati sono stati ottenuti con due metodologie differenti: tradizionale (classica) per l’articolo, bayesiana in questa tesi. L’approccio bayesiano permette di combinare i vari canali e di trattare gli effetti sistematici in modo del tutto naturale. I risultati ottenuti sono in ottimo accordo con le predizioni dello Standard Model e con quelli pubblicati da ATLAS.
Resumo:
The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.
Resumo:
In this thesis we address a multi-label hierarchical text classification problem in a low-resource setting and explore different approaches to identify the best one for our case. The goal is to train a model that classifies English school exercises according to a hierarchical taxonomy with few labeled data. The experiments made in this work employ different machine learning models and text representation techniques: CatBoost with tf-idf features, classifiers based on pre-trained models (mBERT, LASER), and SetFit, a framework for few-shot text classification. SetFit proved to be the most promising approach, achieving better performance when during training only a few labeled examples per class are available. However, this thesis does not consider all the hierarchical taxonomy, but only the first two levels: to address classification with the classes at the third level further experiments should be carried out, exploring methods for zero-shot text classification, data augmentation, and strategies to exploit the hierarchical structure of the taxonomy during training.