7 resultados para Balearic Islands, western Mediterranean Sea

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A climatological field is a mean gridded field that represents the monthly or seasonal trend of an ocean parameter. This instrument allows to understand the physical conditions and physical processes of the ocean water and their impact on the world climate. To construct a climatological field, it is necessary to perform a climatological analysis on an historical dataset. In this dissertation, we have constructed the temperature and salinity fields on the Mediterranean Sea using the SeaDataNet 2 dataset. The dataset contains about 140000 CTD, bottles, XBT and MBT profiles, covering the period from 1900 to 2013. The temperature and salinity climatological fields are produced by the DIVA software using a Variational Inverse Method and a Finite Element numerical technique to interpolate data on a regular grid. Our results are also compared with a previous version of climatological fields and the goodness of our climatologies is assessed, according to the goodness criteria suggested by Murphy (1993). Finally the temperature and salinity seasonal cycle for the Mediterranean Sea is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is on albacore (Thunnus alalunga, Bonnaterre 1788), an epi- and mesopelagic oceanic tuna species cosmopolitan in the tropical and temperate waters of all oceans including the Mediterranean Sea, extending in a broad band between 40°N and 40°S. What it’s known about albacore population structure is based on different studies that used fisheries data, RFLP, mtDNA control region and nuDNA markers, blood lectins analysis, individual tags and microsatellite. At the moment, for T. alalunga six management units are recognized: the North Pacific, South Pacific, Indian, North Atlantic, South Atlantic and Mediterranean stocks. In this study I have done a temporal and spatial comparison of genetic variability between different Mediterranean populations of Thunnus alalunga matching an historical dataset ca. from 1920s composed of 43 individuals divided in 3 populations (NADR, SPAIN and CMED) with a modern dataset composed of 254 individuals and 7 populations (BAL, CYP, LIG, TYR, TUR, ADR, ALB). The investigation was possible using a panel of 94 nuclear SNPs, built specifically for the target species at the University of Basque Country UPV/EHU. First analysis done was the Hardy-Weinberg, then the number of clusters (K) was determined using STRUCTURE and to assess the genetic variability, allele frequencies, the average number of alleles per locus, expected (He) and observed (Ho) heterozygosis, and the index of polymorphism (P) was used the software Genetix. Historical and modern samples gives different results, showing a clear loss of genetic diversity over time leading to a single cluster in modern albacore instead of the two found in historical samples. What this study reveals is very important for conservation concerns, and additional research endeavours are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the discovery that DNA can be successfully recovered from museum collections, a new source of genetic information has been provided to extend our comprehension of the evolutionary history of species. However, historical specimens are often mislabeled or report incorrect information of origin, thus accurate identification of specimens is essential. Due to the highly damaged nature of ancient DNA many pitfalls exist and particular precautions need to be considered in order to perform genetic analysis. In this study we analyze 208 historical remains of pelagic fishes collected in the beginning of the 20th century. Through the adaptation of existing protocols, usually applied to human remains, we manage to successfully retrieve valuable genetic material from almost all of the examined samples using a guanidine and silica column-based approach. The combined use of two mitochondrial markers cytochrome-oxidase-1(mtDNA COI) and Control Region (mtDNA CR), and the nuclear marker first internal transcriber space (ITS1) allowed us to identify the majority of the examined specimens using traditional PCR and Sanger sequencing techniques. The creation of primers capable of amplifying heavily degraded DNA have great potential for future uses, both in ancient and in modern investigation. The methodologies developed in this study can in fact be applied for other ancient fish specimens as well as cooked or canned samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air-sea interactions are a key process in the forcing of the ocean circulation and the climate. Water Mass Formation is a phenomenon related to extreme air-sea exchanges and heavy heat losses by the water column, being capable to transfer water properties from the surface to great depth and constituting a fundamental component of the thermohaline circulation of the ocean. Wind-driven Coastal Upwelling, on the other hand, is capable to induce intense heat gain in the water column, making this phenomenon important for climate change; further, it can have a noticeable influence on many biological pelagic ecosystems mechanisms. To study some of the fundamental characteristics of Water Mass Formation and Coastal Upwelling phenomena in the Mediterranean Sea, physical reanalysis obtained from the Mediterranean Forecating System model have been used for the period ranging from 1987 to 2012. The first chapter of this dissertation gives the basic description of the Mediterranean Sea circulation, the MFS model implementation, and the air-sea interaction physics. In the second chapter, the problem of Water Mass Formation in the Mediterranean Sea is approached, also performing ad-hoc numerical simulations to study heat balance components. The third chapter considers the study of Mediterranean Coastal Upwelling in some particular areas (Sicily, Gulf of Lion, Aegean Sea) of the Mediterranean Basin, together with the introduction of a new Upwelling Index to characterize and predict upwelling features using only surface estimates of air-sea fluxes. Our conclusions are that latent heat flux is the driving air-sea heat balance component in the Water Mass Formation phenomenon, while sensible heat exchanges are fundamental in Coastal Upwelling process. It is shown that our upwelling index is capable to reproduce the vertical velocity patterns in Coastal Upwelling areas. Nondimensional Marshall numbers evaluations for the open-ocean convection process in the Gulf of Lion show that it is a fully turbulent, three-dimensional phenomenon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fin whale (Balaenoptera physalus) is the only misticeto commonly observed in the Mediterranean. The males emit sounds, classic pulse products in sequences called songs, at 20Hz for sexual purposes: sounds are produced during the spring for migration to the Tirreno-Ligurian-Provençal basin, the summer feeding area, and during the autumn, when there is a migration to the south to meet the winter breeding season. This area in the Mediterranean sea is unknown. The east coast of the Iberian Peninsula is a migration area. The study was conducted by analyzing through Adobe Audition 3.0 and XBAT softwares files audio of 30 minutes recorded in 2006, in 2011 and 2012 at the level of the Columbretes Islands, in the western Mediterranean sea, using two hearing aids: the MARU, used in 2006 and the EAR, used in 2011 and 2012. From the analysis have emerged that, in addition to songs with pulses of 20 Hz, there are new sounds of fin whale never previously recognized: the VFPs (Variable Frequency Pulses), higher-frequency pulses emitted, between 50 and 120Hz and the ramps, a set of 7-8 pulses, pertaining to a particular song, of increasing frequency. Further studies are needed to understand the importance of these new sounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its environmental, safety, health and socio-economic impacts, marine litter has been recognized as a 21st century global challenge, so that it has been included in Descriptor 10 of the EU MSFD. For its morphological features and anthropogenic pressures, the Adriatic Sea is very sensitive to the accumulation of debris, but data are inconsistent and fragmented. This thesis, in the framework of DeFishGear project, intents to assess marine litter on beaches and on seafloor in the Western Adriatic sea, and test if debris ingestion by fish occurs. Three beaches were sampled during two surveys in 2015. Benthic litter monitoring was carried out in the FAO GSA17 during fall 2014, using a rapido trawl. Litter ingestion was investigated through gut contents analysis of 260 fish belonging to 8 commercial species collected in Western Gulf of Venice. Average litter density on beaches was 1.5 items/m2 during spring, and decreased to 0.8 items/m2 in summer. Litter composition was heterogeneous and varied among sites, even if no significant differences were found. Most of debris consisted of plastic sheets, fragments, polystyrene pieces, mussels nets and cottons bud sticks, showing that sources are many and include aquaculture, land-based activities and local users of beaches. Average density of benthic litter was 913 items/Km2 (82 Kg/Km2). Plastic dominated in terms of numbers and weight, and consisted mainly of bags, sheets and mussel nets. The highest density was found close to the coast, and sources driving the major differences in litter distribution were mussel farms and shipping lanes. Litter ingestion occurred in 47% of examined fish, mainly consisting of fibers. Among species, S. pilchardus swallowed almost all debris categories. Findinds may provide a baseline to set the necessary measures to manage and minimize marine litter in the Western Adriatic region and to protect aquatic life from plastic pollution, even accounting the possible implications on human health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sea level variation is one of the parameters directly related to climate change. Monitoring sea level rise is an important scientific issue since many populated areas of the world and megacities are located in low-lying regions. At present, sea level is measured by means of two techniques: the tide gauges and the satellite radar altimetry. Tide gauges measure sea-level relatively to a ground benchmark, hence, their measurements are directly affected by vertical ground motions. Satellite radar altimetry measures sea-level relative to a geocentric reference and are not affected by vertical land motions. In this study, the linear relative sea level trends of 35 tide gauge stations distributed across the Mediterranean Sea have been computed over the period 1993-2014. In order to extract the real sea-level variation, the vertical land motion has been estimated using the observations of available GPS stations and removed from the tide gauges records. These GPS-corrected trends have then been compared with satellite altimetry measurements over the same time interval (AVISO data set). A further comparison has been performed, over the period 1993-2013, using the CCI satellite altimetry data set which has been generated using an updated modeling. The absolute sea level trends obtained from satellite altimetry and GPS-corrected tide gauge data are mostly consistent, meaning that GPS data have provided reliable corrections for most of the sites. The trend values range between +2.5 and +4 mm/yr almost everywhere in the Mediterranean area, the largest trends were found in the Northern Adriatic Sea and in the Aegean. These results are in agreement with estimates of the global mean sea level rise over the last two decades. Where GPS data were not available, information on the vertical land motion deduced from the differences between absolute and relative trends are in agreement with the results of other studies.