4 resultados para BLOCK CO-POLYMERS

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rheological properties of block co-polymers in water solution at different pH have been investigated. The block copolymers are based on different architectures containing poly(ethylene glycol), poly(propylene glycol) and different blocks of polymer that change their hydrophobic/hydrophilic behavior as a function of pH. The polymer chains of the starting material were extended at their functional ends with the pH-sensitive units using ATRP; this mechanism of controlled radical polymerization was chosen because of the need to minimize polydispersity and avoid transfer reactions possibly leading to homopolymeric inpurities. The starting material were modified in order to use them as macroinitiator for ATRP. The kinetic of each ATRP reaction has been investigated, in order to be able to synthesize polymers with different degree of polymerization, stopping the reaction when the desired polymers chain length has been reached. We will use polymer chains with different basicity and degree of polymerization to link any possible effect of their presence to the conditions under which they become hydrophobic. It has been shown that the rate of polymerization changes changing the type of macroinitiator and the type of monomer synthesized. The slowest rate of polymerization is the one with the most hindered monomer synthesized using the macroinitiator with the highest molecular weight. The water solubility of the synthesized polymers changes depending on the pH of the solution and on the structure of the polymers. It has been shown using 1H-NMR that some of the synthesized polymers are capable to self-aggregation in water solution. The self-aggregation and the type of aggregation is influenced from the structure of the polymer and from the pH of the solution. Changing the structure of the polymers and the pH it is possible to obtain different type of aggregates in solution. This aggregates differ for the volume occupied from them, and for their hardness. Rheological measurements have been demonstrated that the synthesized polymers are capable to form gel phases. The gelation temperature changes changing the structure of the aggregates in solution and it is possible to correlate the changing in the gelation temperature with the changing in the structure of the polymer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis it has been studied the crystallization and morphology of random copolymers poly (L-lactide-ran-ε-caprolactone) with different compositions of the two monomers since the physical, mechanical, optical and chemical properties of a material depend on this behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) to observe behaviors due to the different compositions of the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-caprolactone) was investigated by polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). Their thermal behavior was observed with crystallization from melt. It was observed that with increasing amounts of PCL in the copolymer, there is a decrease of the thermal degradation. Studies on the crystallization kinetics have shown that small quantities of PCL in the copolymer increase the overall crystallization kinetics and the crystal growth rate which decreases with higher quantities of PCL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis work is part of a larger synthesis project about alkyd resins from natural sources, copolymerized with methyl acrylate and n-butyl acrylates, which wil be used for coatings purpose. The aim is to control the copolymerization of methyl acrylate and n-butyl acrylate in RAFT miniemulsion. The research was divided into three parts. First the homopolymerization of methyl methacrylate and n-butyl acrylate was studied by varying different parameters such as the amount of surfactant, the amount of initiator, pH, and especially the RAFT agent. Then two macro RAFT agents were synthesized, as suggested by the existing literature. Finally, the two monomers were copolymerized using both the RAFT used for the homopolymerization and those synthesized in the second stage. To verify the obtained control over the polymerization, the synthesized polymers were analyzed by gel permeation chromatography, GPC, thus finding their molecular weight and its polydispersity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, environmental concerns and the expected shortage in the fossil reserves have increased further development of biomaterials. Among them, poly(lactide) PLA possess some potential properties such as good ability process, excellent tensile strength and stiffness equivalent to some commercial petroleum-based polymers (PP, PS, PET, etc.). This biobased polymer is also biodegradable and biocompatible However, one great disadvantage of commercial PLA is slow crystallization rate, which restricts its use in many fields. Using of nanofillers is viewed as an efficient strategy to overcome this problem. In this thesis, the effect of bionanofillers in neat PLA and in blends of poly (L-lactide)(PLA)/poly(ε-Caprolactone) (PCL) has been investigated. The used nanofillers are: poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-b-ε-caprolactone) grafted on cellulose nanowhiskers and neat cellulose nanowhiskers (CNW). The grafting reaction of poly(L-lactide-co-caprolactone) and poly (L-lactide-b-caprolactone) on the nanocellulose has been performed by the grafting from technique. In this way the polymerization reaction it is directly initiated on the substrate surface. The condition of the reaction were chosen after a temperature and solvent screening. By non-isothermal an isothermal DSC analysis the effect of bionanofillers on PLA and 80/20 PLA/PCL was evaluated. Non-isothermal DSC scans show a nucleating effect of the bionanofillers on PLA. This effect is detectable during PLA crystallization from the glassy state. Cold crystallization temperature is reduced upon the addition of the poly(L-lactide-b-caprolactone) grafted on cellulose nanowhiskers that is most performing bionanofiller in acting as a nucleating agent. On the other hand, DSC isothermal analysis on the overall crystallization rate indicate that cellulose nanowhiskers are best nucleating agents during isothermal crystallization from the melt state. In conclusion, nanofillers have different behavior depending on the processing conditions. However, the efficiency of our nanofillers as nucleating agent was clearly demonstrated in both isothermal as in non-isothermal condition.