5 resultados para Audio-visual content classification

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In political debates, the media[tisation] can determine the use of language with the aim to increase their spectacularisation and polarisation, possibly by means of criticism and humour, respectively. These linguistic strategies are often used in order to shape what was defined by Goffman as one’s face. Politicians, in particular, can recur to facework in a double sense: shaping their own face positively and/or that of their opponents negatively. Starting from the sociologic theory of face by Goffman and Levinson, with the help of corpus analysis tools, this research investigated the ways in which various forms of criticism and forms of humour were conducted in 3 electoral debates on a national scale (Germany, Ireland, and New Zealand) and 1 debate for the municipal election in Rome. The transcripts were revised after automatic transcriptions were extracted or found online, of which the audio-visual content is available on the Internet. The CADS research aimed to investigate the role that criticism and humour played within each participant’s discourse, and to identify differences and similarities among the strategies used by political leaders and moderators in different countries, and in different cultural, political, and media contexts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we are going to talk about technologies which allow us to approach sentiment analysis on newspapers articles. The final goal of this work is to help social scholars to do content analysis on big corpora of texts in a faster way thanks to the support of automatic text classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout the years, technology has had an undeniable impact on the AVT field. It has revolutionized the way audiovisual content is consumed by allowing audiences to easily access it at any time and on any device. Especially after the introduction of OTT streaming platforms such as Netflix, Amazon Prime Video, Disney+, Apple TV+, and HBO Max, which offer a vast catalog of national and international products, the consumption of audiovisual products has been on a constant rise and, consequently, the demand for localized content too. In turn, the AVT industry resorts to new technologies and practices to handle the ever-growing workload and the faster turnaround times. Due to the numerous implications that it has on the industry, technological advancement can be considered an area of research of particular interest for the AVT studies. However, in the case of dubbing, research and discussion regarding the topic is lagging behind because of the more limited impact that technology has had on the very conservative dubbing industry. Therefore, the aim of the dissertation is to offer an overview of some of the latest technological innovations and practices that have already been implemented (i.e. cloud dubbing and DeepDub technology) or that are still under development and research (i.e. automatic speech recognition and respeaking, machine translation and post-editing, audio-based and visual-based dubbing techniques, text-based editing of talking-head videos, and automatic dubbing), and respectively discuss their reception by the industry professionals, and make assumptions about their future implementation in the dubbing field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the advent of high-performance computing devices, deep neural networks have gained a lot of popularity in solving many Natural Language Processing tasks. However, they are also vulnerable to adversarial attacks, which are able to modify the input text in order to mislead the target model. Adversarial attacks are a serious threat to the security of deep neural networks, and they can be used to craft adversarial examples that steer the model towards a wrong decision. In this dissertation, we propose SynBA, a novel contextualized synonym-based adversarial attack for text classification. SynBA is based on the idea of replacing words in the input text with their synonyms, which are selected according to the context of the sentence. We show that SynBA successfully generates adversarial examples that are able to fool the target model with a high success rate. We demonstrate three advantages of this proposed approach: (1) effective - it outperforms state-of-the-art attacks by semantic similarity and perturbation rate, (2) utility-preserving - it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient - it performs attacks faster than other methods.