4 resultados para Atomic-layer deposition

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nel presente lavoro di tesi magistrale sono stati depositati e caratterizzati sottili film di ossido di alluminio, Al2O3, (di spessore compreso tra 3-30 nm) su un substrato di FZ-Si drogato p. La deposizione è avvenuta mediante plasma ALD (Atomic Layer Depostion). La tecnica spettroscopica EPR (Electron Paramagnetic Resonance) è stata utilizzata per studiare l’interfaccia Si/Al2O3 con lo scopo di scoprire l’origine della formazione di densità di carica negativa Qf all’interfaccia: tale carica negativa induce una passivazione per effetto di campo ed è quindi la ragione per cui il dielettrico Al2O3 risulta essere un ottimo materiale passivante. Si è deciso di variare alcuni parametri, come lo spessore dello strato di Al2O3, lo spessore dello strato intermedio di ossido di silicio, depositato mediante ossidazione termica (dry thermal oxidation), e la superficie del substrato di silicio. Sono stati realizzati cinque differenti gruppi di campioni: per ciascuno di essi sono state impiegate varie tecniche di caratterizzazione, come la QSSPC (Quasi Steady State Photoconuctance) e la tecnica di spettroscopia ottica SE (spettroscopic ellipsometry). Per ogni gruppo sono stati riportati gli spettri EPR ottenuti ed i rispettivi fit, da cui è stato possibile risalire ai fattori giromagnetici di spin g, riportati in tabelle con le loro possibili attribuzioni. E’ stato dimostrato che la presenza di uno strato di ossido di silicio tra il substrato di silicio e lo strato di ossido di alluminio risulta essere fondamentale per la formazione di densità di carica negativa all’interfaccia: aumentando lo spessore dello strato di SiOx (nel range 1-30 nm) si assiste ad una diminuzione di carica negativa Qf. Analizzando gli spettri EPR, è stato possibile concludere che all’interfaccia Si/Al2O3 sono presenti difetti caratteristici dell’interfaccia Si/SiOx. Le nostre osservazioni, dunque, sono coerenti con la formazione di uno strato di ossido di silicio tra Si e Al2O3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic solar cells bear the potential for large-scale power generation based on flexible, lightweight, inexpensive materials. Since the discovery of the photo-induced electron transfer from a conjugated polymer (electron-donor) to fullerene or its derivatives molecules (electron-acceptors), followed by the introduction of the bulk heterojunction concept which means donors and acceptors blended together to realize the fotoactive layer, materials and deposition techniques have been extensively studied. In this work, electrochemical-deposition methods of polymeric conductive films were studied in order to realize bulk heterojunction solar cells. Indium Tin Oxide (ITO) glass electrodes modified with a thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically prepared under potentiodynamic and potentiostatic conditions; then those techniques were applied for the electrochemical co-deposition of donor and acceptor on modified ITO electrode to produce the active layer (blend). For the deposition of the electron-donor polymer the electropolymerization of many functionalized thiophene monomers was investigated while, as regards acceptors, fullerene was used first, then the study was focused on its derivative PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The polymeric films obtained (PEDOT and blend) were electrochemically and spectrophotometrically characterized and the film thicknesses were evaluated by atomic force microscopy (AFM). Finally, to check the performances and the efficiency of the realized solar cells, tests were carried out under standard conditions. Nowadays bulk heterojunction solar cells are still poorly efficient to be competitively commercialized. A challenge will be to find new materials and better deposition techniques in order to obtain better performances. The research has led to several breakthroughs in efficiency, with a power conversion efficiency approaching 5 %. The efficiency of the solar cells produced in this work is even lower (lower than 1 %). Despite all, solar cells of this type are interesting and may represent a cheaper and easier alternative to traditional silicon-based solar panels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cor-Ten is a particular kind of steel, belonging to low-alloyed steel; thanks to his aesthetic features and resistance to atmospheric corrosion, this material is largely used in architectural, artistic and infrastructural applications. After environmental exposure, Cor-Ten steel exhibits the characteristic ability to self-protect from corrosion, by the development of a stable and adherent protective layer. However, some environmental factors can influence the formation and stability of the patina. In particular, exposure of Cor-Ten to polluted atmosphere (NOx, SOx, O3) or coastal areas (marine spray) may cause problems to the protective layer and, as a consequence, a release of alloying metals, which can accumulate near the structures. Some of these metals, such as Cr and Ni, could be very dangerous for soils and water because of their large toxicity. The aim of this work was to study the corrosion behavior of Cor-Ten exposed to an urban-coastal site (Rimini, Italy). Three different kinds of commercial surface finish (bare and pre-patinated, with or without a beeswax covering) were examined, both in sheltered and unsheltered exposure conditions. Wet deposition brushing the specimens surface (leaching solutions) are monthly collected and analyzed to evaluate the extent of metal release and the form in which they leave the surface, for example, as water-soluble compounds or non-adherent corrosion products. Five alloying metals (Fe, Cu, Cr, Mn and Ni) and nine ions (Cl-, NO3-, NO2-, SO42-, Na+, Ca2+, K+, Mg2+, NH4+) are determined through Atomic Absorption Spectroscopy and Ion Chromatography, respectively. Furthermore, the evolution and the behaviour of the patina are periodically followed by surface investigations (SEM-EDS and Raman Spectroscopy). After two years of exposure, the results show that Bare Cor-Ten, cheaper than the other analyzed specimens, even though undergoes the greater mass variation, his metal release is comparable to the release of the pre-patinated samples. The behavior of pre-patinated steel, with or without beeswax covering, do not show particular difference. This exposure environment doesn’t allow a completely stabilization of the patina; nevertheless an estimate of metal release after 10 years of exposure points out that the environmental impact of Cor-Ten is very low: for example, the release of chromium in the soluble fraction is less than 10 mg if we consider an exposed wall of 10 m2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years technologies related to photovoltaic energy have rapidly developed and the interest on renewable energy power source substantially increased. In particular, cost reduction and appropriate feed-in tariff contributed to the increase of photovoltaic installation, especially in Germany and Italy. However, for several technologies, the observed experimental efficiency of solar cells is still far from the theoretical maximum efficiency, and thus there is still room for improvement. In this framework the research and development of new materials and new solar devices is mandatory. In this thesis the morphological and optical properties of thin films of nanocrystalline silicon oxynitride (nc-SiON) have been investigated. This material has been studied in view of its application in Si based heterojunction solar cells (HIT). Actually, a-Si:H is used now in these cells as emitter layer. Amorphous SiO_x N_y has already shown excellent properties, such as: electrical conductivity, optical energy gap and transmittance higher than the ones of a-Si:H. Nc-SiO_x N_y has never been investigated up to now, but its properties can surpass the ones of amorphous SiON. The films of nc-SiON have been deposited at the University of Konstanz (Germany). The properties of these films have been studied using of atomic force microscopy and optical spectroscopy methods. This material is highly complex as it is made by different coexisting phases. The main purpose of this thesis is the development of methods for the analyses of morphological and optical properties of nc-SiON and the study of the reliability of those methods to the measurement of the characteristics of these silicon films. The collected data will be used to understand the evolution of the properties of nc-SiON, as a function of the deposition parameters. The results here obtained show that nc-SiON films have better properties with respect to both a-Si:H and a-SiON, i. e. higher optical band-gap and transmittance. In addition, the analysis of the variation of the observed properties as a function of the deposition parameters allows for the optimization of deposition conditions for obtaining optimal efficiency of a HIT cell with SiON layer.