2 resultados para Art and society.

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern society, security issues of IT Systems are intertwined with interdisciplinary aspects, from social life to sustainability, and threats endanger many aspects of every- one’s daily life. To address the problem, it’s important that the systems that we use guarantee a certain degree of security, but to achieve this, it is necessary to be able to give a measure to the amount of security. Measuring security is not an easy task, but many initiatives, including European regulations, want to make this possible. One method of measuring security is based on the use of security metrics: those are a way of assessing, from various aspects, vulnera- bilities, methods of defense, risks and impacts of successful attacks then also efficacy of reactions, giving precise results using mathematical and statistical techniques. I have done literature research to provide an overview on the meaning, the effects, the problems, the applications and the overall current situation over security metrics, with particular emphasis in giving practical examples. This thesis starts with a summary of the state of the art in the field of security met- rics and application examples to outline the gaps in current literature, the difficulties found in the change of application context, to then advance research questions aimed at fostering the discussion towards the definition of a more complete and applicable view of the subject. Finally, it stresses the lack of security metrics that consider interdisciplinary aspects, giving some potential starting point to develop security metrics that cover all as- pects involved, taking the field to a new level of formal soundness and practical usability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Robotic Grasping is an important research topic in robotics since for robots to attain more general-purpose utility, grasping is a necessary skill, but very challenging to master. In general the robots may use their perception abilities like an image from a camera to identify grasps for a given object usually unknown. A grasp describes how a robotic end-effector need to be positioned to securely grab an object and successfully lift it without lost it, at the moment state of the arts solutions are still far behind humans. In the last 5–10 years, deep learning methods take the scene to overcome classical problem like the arduous and time-consuming approach to form a task-specific algorithm analytically. In this thesis are present the progress and the approaches in the robotic grasping field and the potential of the deep learning methods in robotic grasping. Based on that, an implementation of a Convolutional Neural Network (CNN) as a starting point for generation of a grasp pose from camera view has been implemented inside a ROS environment. The developed technologies have been integrated into a pick-and-place application for a Panda robot from Franka Emika. The application includes various features related to object detection and selection. Additionally, the features have been kept as generic as possible to allow for easy replacement or removal if needed, without losing time for improvement or new testing.