2 resultados para Arnold Bode
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Lo scopo della tesi è dimostrare il teorema di Arnold-Liouville, il quale afferma che dato un sistema a n gradi di libertà, con n integrali primi del moto in involuzione, esiste una trasformazione canonica di variabili azione-angolo, attraverso la quale si può riscrivere il sistema in uno ad esso equivalente, ma dipendente solo dalle azioni. Per arrivare a questo risultato nel primo capitolo viene richiamata la nozione di sistema hamiltoniano, di flusso del sistema e delle sue proprietà, viene infine introdotta una operazione binaria tra funzioni, la parentesi di Poisson, evidenziando il suo legame con il formalismo hamiltoniano. Nel secondo capitolo si definisce inizialmente cos'è una trasformazione canonica di variabili, dimostrando poi alcuni criteri per la canonicità di queste, mediante la verifica di determinate condizione necessarie e sufficienti, con opportuni esempi di trasformazioni canoniche e non. Nel terzo capitolo si definisce cos'è un sistema hamiltoniano integrabile, facendone successivamente un esempio a un grado di libertà con il pendolo. Il procedimento svolto in questo esempio si vorrà poi estendere a un generico sistema a n gradi di libertà, dunque verrà enunciato e dimostrato il teorema di Arnold-Liouvill, il quale, sotto opportune ipotesi, permette di risolvere questo problema.
Resumo:
In questa tesi si mostrano alcune applicazioni degli integrali ellittici nella meccanica Hamiltoniana, allo scopo di risolvere i sistemi integrabili. Vengono descritte le funzioni ellittiche, in particolare la funzione ellittica di Weierstrass, ed elenchiamo i tipi di integrali ellittici costruendoli dalle funzioni di Weierstrass. Dopo aver considerato le basi della meccanica Hamiltoniana ed il teorema di Arnold Liouville, studiamo un esempio preso dal libro di Moser-Integrable Hamiltonian Systems and Spectral Theory, dove si prendono in considerazione i sistemi integrabili lungo la geodetica di un'ellissoide, e il sistema di Von Neumann. In particolare vediamo che nel caso n=2 abbiamo un integrale ellittico.