2 resultados para Archival materials -- Conservation and restoration

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ericaria amentacea is an endemic alga of the Mediterranean Sea that lives in the littoral rocky fringe. The species is sensitive to environmental changes, so it’s used to assess the water ecological quality. Nevertheless, E. amentacea is deeply impacted by coastal development which cause rapid regression despite data on its distribution and healthy status are still limited. Moreover, it’s little known by people outside the scientific community. In this context, Portofino Seaweed Garden was born, a conservation and citizen science project aim to involve marine outdoor enthusiasts in protecting and restoring E. amentacea, creating a submerged garden. Restoration measures have been encouraged by EU regulations. Here, using citizen science, 1) I evaluated the spatial variability of E. amentacea abundance along the central-eastern Ligurian coast, to evaluate its status and choose donor and restoration sites. 2) I carried out an E. amentacea restoration (with outplanting lab-cultured embryos on 50 clay tiles). 3) I assessed the community involvement and education of volunteers. Simple protocol was created to train them on the monitoring. Unprecedented E. amentacea reproductive mismatch affected the restoration performance, probably caused by marine heat wave that hit the Mediterranean in summer 2022. After fertile apices collection in Pontetto (GE) and during laboratory phase, gametes spawned on the discs didn’t settle as expected. Only 16 tiles showed juveniles and they were outplanted at Punta Castello (C zone of Portofino MPA). Unfortunately, they didn’t survive in the field due to an interplay of physical and biological factors. From citizen science point of view, the project demonstrated positive outcomes of collaborations between people and scientists by involving more than 100 participants. Citizen scientists became specialize in the protocol providing quality data for E. amentacea conservation. Current results suggest that outplanting should be further tested.