2 resultados para Architecture and sustainability
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The newly inaugurated Navile District of the University of Bologna is a complex created along the Navile canal, that now houses various teaching and research activities for the disciplines of Chemistry, Industrial Chemistry, Pharmacy, Biotechnology and Astronomy. A Building Information Modeling system (BIM) gives staff of the Navile campus several ways to monitor buildings in the complex throughout their life cycle, one of which is the ability to access real-time environmental data such as room temperature, humidity, air composition, and more, thereby simplifying operations like finding faults and optimizing environmental resource usage. But smart features at Navile are not only available to the staff: AlmaMap Navile is a web application, whose development is documented in this thesis, that powers the public touch kiosks available throughout the campus, offering maps of the district and indications on how to reach buildings and spaces. Even if these two systems, BIM and AlmaMap, don't seem to have many similarities, they share the common intent of promoting awareness for informed decision making in the campus, and they do it while relying on web standards for communication. This opens up interesting possibilities, and is the idea behind AlmaMap Navile 2.0, an app that interfaces with the BIM system and combines real-time sensor data with a comfort calculation algorithm, giving users the ability not just to ask for directions to a space, but also to see its comfort level in advance and, should they want to, check environmental measurements coming from each sensor in a granular manner. The end result is a first step towards building a smart campus Digital Twin, that can support all the people who are part of the campus life in their daily activities, improving their efficiency and satisfaction, giving them the ability to make informed decisions, and promoting awareness and sustainability.
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.