7 resultados para Application methods

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questo documento descrive gran parte del lavoro svolto durante un periodo di studio di sei mesi all’International Centre for Geohazards (ICG) di Oslo. Seguendo la linea guida dettata nel titolo, sono stati affrontati diversi aspetti riguardanti la modellazione numerica dei pendii quali l’influenza delle condizioni al contorno e delle proporzioni del modello, la back-analysis di eventi di scivolamento e l’applicazione delle analisi di stabilità monodimensionali. La realizzazione di semplici modelli con il programma agli elementi finiti PLAXIS (Brinkgreve et al., 2008) ha consentito di analizzare le prestazioni dei modelli numerici riguardo all’influenza delle condizioni al contorno confrontandoli con un calcolo teorico del fattore di amplificazione. Questa serie di test ha consentito di stabilire alcune linee guida per la realizzazione di test con un buon livello di affidabilità. Alcuni case-history, in particolare quello di Las Colinas (El Salvador), sono stati modellati allo scopo di applicare e verificare i risultati ottenuti con i semplici modelli sopracitati. Inoltre sono state svolte analisi di sensitività alla dimensione della mesh e ai parametri di smorzamento e di elasticità. I risultati hanno evidenziato una forte dipendenza dei risultati dai parametri di smorzamento, rilevando l’importanza di una corretta valutazione di questa grandezza. In ultima battuta ci si è occupati dell’accuratezza e dell’applicabilità dei modelli monodimensionali. I risultati di alcuni modelli monodimensionali realizzati con il software Quiver (Kaynia, 2009) sono stati confrontati con quelli ottenuti da modelli bidimensionali. Dal confronto è risultato un buon grado di approssimazione accompagnato da un margine di sicurezza costante. Le analisi monodimensionali sono poi state utilizzate per la verifica di sensitività. I risultati di questo lavoro sono qui presentati e accompagnati da suggerimenti qualitativi e quantitativi per la realizzazione di modelli bidimensionali affidabili. Inoltre si descrive la possibilità di utilizzare modelli monodimensionali in caso d’incertezze sui parametri. Dai risultati osservati emerge la possibilità di ottenere un risparmio di tempo nella realizzazione di importanti indagini di sensitività.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Questa tesi si inserisce nell'ambito delle analisi statistiche e dei metodi stocastici applicati all'analisi delle sequenze di DNA. Nello specifico il nostro lavoro è incentrato sullo studio del dinucleotide CG (CpG) all'interno del genoma umano, che si trova raggruppato in zone specifiche denominate CpG islands. Queste sono legate alla metilazione del DNA, un processo che riveste un ruolo fondamentale nella regolazione genica. La prima parte dello studio è dedicata a una caratterizzazione globale del contenuto e della distribuzione dei 16 diversi dinucleotidi all'interno del genoma umano: in particolare viene studiata la distribuzione delle distanze tra occorrenze successive dello stesso dinucleotide lungo la sequenza. I risultati vengono confrontati con diversi modelli nulli: sequenze random generate con catene di Markov di ordine zero (basate sulle frequenze relative dei nucleotidi) e uno (basate sulle probabilità di transizione tra diversi nucleotidi) e la distribuzione geometrica per le distanze. Da questa analisi le proprietà caratteristiche del dinucleotide CpG emergono chiaramente, sia dal confronto con gli altri dinucleotidi che con i modelli random. A seguito di questa prima parte abbiamo scelto di concentrare le successive analisi in zone di interesse biologico, studiando l’abbondanza e la distribuzione di CpG al loro interno (CpG islands, promotori e Lamina Associated Domains). Nei primi due casi si osserva un forte arricchimento nel contenuto di CpG, e la distribuzione delle distanze è spostata verso valori inferiori, indicando che questo dinucleotide è clusterizzato. All’interno delle LADs si trovano mediamente meno CpG e questi presentano distanze maggiori. Infine abbiamo adottato una rappresentazione a random walk del DNA, costruita in base al posizionamento dei dinucleotidi: il walk ottenuto presenta caratteristiche drasticamente diverse all’interno e all’esterno di zone annotate come CpG island. Riteniamo pertanto che metodi basati su questo approccio potrebbero essere sfruttati per migliorare l’individuazione di queste aree di interesse nel genoma umano e di altri organismi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, numerical methods aiming at determining the eigenfunctions, their adjoint and the corresponding eigenvalues of the two-group neutron diffusion equations representing any heterogeneous system are investigated. First, the classical power iteration method is modified so that the calculation of modes higher than the fundamental mode is possible. Thereafter, the Explicitly-Restarted Arnoldi method, belonging to the class of Krylov subspace methods, is touched upon. Although the modified power iteration method is a computationally-expensive algorithm, its main advantage is its robustness, i.e. the method always converges to the desired eigenfunctions without any need from the user to set up any parameter in the algorithm. On the other hand, the Arnoldi method, which requires some parameters to be defined by the user, is a very efficient method for calculating eigenfunctions of large sparse system of equations with a minimum computational effort. These methods are thereafter used for off-line analysis of the stability of Boiling Water Reactors. Since several oscillation modes are usually excited (global and regional oscillations) when unstable conditions are encountered, the characterization of the stability of the reactor using for instance the Decay Ratio as a stability indicator might be difficult if the contribution from each of the modes are not separated from each other. Such a modal decomposition is applied to a stability test performed at the Swedish Ringhals-1 unit in September 2002, after the use of the Arnoldi method for pre-calculating the different eigenmodes of the neutron flux throughout the reactor. The modal decomposition clearly demonstrates the excitation of both the global and regional oscillations. Furthermore, such oscillations are found to be intermittent with a time-varying phase shift between the first and second azimuthal modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the work is: define and calculate a factor of collapse related to traditional method to design sheet pile walls. Furthermore, we tried to find the parameters that most influence a finite element model representative of this problem. The text is structured in this way: from chapter 1 to 5, we analyzed a series of arguments which are usefull to understanding the problem, while the considerations mainly related to the purpose of the text are reported in the chapters from 6 to 10. In the first part of the document the following arguments are shown: what is a sheet pile wall, what are the codes to be followed for the design of these structures and what they say, how can be formulated a mathematical model of the soil, some fundamentals of finite element analysis, and finally, what are the traditional methods that support the design of sheet pile walls. In the chapter 6 we performed a parametric analysis, giving an answer to the second part of the purpose of the work. Comparing the results from a laboratory test for a cantilever sheet pile wall in a sandy soil, with those provided by a finite element model of the same problem, we concluded that:in modelling a sandy soil we should pay attention to the value of cohesion that we insert in the model (some programs, like Abaqus, don’t accept a null value for this parameter), friction angle and elastic modulus of the soil, they influence significantly the behavior of the system (structure-soil), others parameters, like the dilatancy angle or the Poisson’s ratio, they don’t seem influence it. The logical path that we followed in the second part of the text is reported here. We analyzed two different structures, the first is able to support an excavation of 4 m, while the second an excavation of 7 m. Both structures are first designed by using the traditional method, then these structures are implemented in a finite element program (Abaqus), and they are pushed to collapse by decreasing the friction angle of the soil. The factor of collapse is the ratio between tangents of the initial friction angle and of the friction angle at collapse. At the end, we performed a more detailed analysis of the first structure, observing that, the value of the factor of collapse is influenced by a wide range of parameters including: the value of the coefficients assumed in the traditional method and by the relative stiffness of the structure-soil system. In the majority of cases, we found that the value of the factor of collapse is between and 1.25 and 2. With some considerations, reported in the text, we can compare the values so far found, with the value of the safety factor proposed by the code (linked to the friction angle of the soil).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress recovery techniques have been an active research topic in the last few years since, in 1987, Zienkiewicz and Zhu proposed a procedure called Superconvergent Patch Recovery (SPR). This procedure is a last-squares fit of stresses at super-convergent points over patches of elements and it leads to enhanced stress fields that can be used for evaluating finite element discretization errors. In subsequent years, numerous improved forms of this procedure have been proposed attempting to add equilibrium constraints to improve its performances. Later, another superconvergent technique, called Recovery by Equilibrium in Patches (REP), has been proposed. In this case the idea is to impose equilibrium in a weak form over patches and solve the resultant equations by a last-square scheme. In recent years another procedure, based on minimization of complementary energy, called Recovery by Compatibility in Patches (RCP) has been proposed in. This procedure, in many ways, can be seen as the dual form of REP as it substantially imposes compatibility in a weak form among a set of self-equilibrated stress fields. In this thesis a new insight in RCP is presented and the procedure is improved aiming at obtaining convergent second order derivatives of the stress resultants. In order to achieve this result, two different strategies and their combination have been tested. The first one is to consider larger patches in the spirit of what proposed in [4] and the second one is to perform a second recovery on the recovered stresses. Some numerical tests in plane stress conditions are presented, showing the effectiveness of these procedures. Afterwards, a new recovery technique called Last Square Displacements (LSD) is introduced. This new procedure is based on last square interpolation of nodal displacements resulting from the finite element solution. In fact, it has been observed that the major part of the error affecting stress resultants is introduced when shape functions are derived in order to obtain strains components from displacements. This procedure shows to be ultraconvergent and is extremely cost effective, as it needs in input only nodal displacements directly coming from finite element solution, avoiding any other post-processing in order to obtain stress resultants using the traditional method. Numerical tests in plane stress conditions are than presented showing that the procedure is ultraconvergent and leads to convergent first and second order derivatives of stress resultants. In the end, transverse stress profiles reconstruction using First-order Shear Deformation Theory for laminated plates and three dimensional equilibrium equations is presented. It can be seen that accuracy of this reconstruction depends on accuracy of first and second derivatives of stress resultants, which is not guaranteed by most of available low order plate finite elements. RCP and LSD procedures are than used to compute convergent first and second order derivatives of stress resultants ensuring convergence of reconstructed transverse shear and normal stress profiles respectively. Numerical tests are presented and discussed showing the effectiveness of both procedures.