6 resultados para Anion recognition

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uno dei principali ambiti di ricerca dell’intelligenza artificiale concerne la realizzazione di agenti (in particolare, robot) in grado di aiutare o sostituire l’uomo nell’esecuzione di determinate attività. A tal fine, è possibile procedere seguendo due diversi metodi di progettazione: la progettazione manuale e la progettazione automatica. Quest’ultima può essere preferita alla prima nei contesti in cui occorra tenere in considerazione requisiti quali flessibilità e adattamento, spesso essenziali per lo svolgimento di compiti non banali in contesti reali. La progettazione automatica prende in considerazione un modello col quale rappresentare il comportamento dell’agente e una tecnica di ricerca (oppure di apprendimento) che iterativamente modifica il modello al fine di renderlo il più adatto possibile al compito in esame. In questo lavoro, il modello utilizzato per la rappresentazione del comportamento del robot è una rete booleana (Boolean network o Kauffman network). La scelta di tale modello deriva dal fatto che possiede una semplice struttura che rende agevolmente studiabili le dinamiche tuttavia complesse che si manifestano al suo interno. Inoltre, la letteratura recente mostra che i modelli a rete, quali ad esempio le reti neuronali artificiali, si sono dimostrati efficaci nella programmazione di robot. La metodologia per l’evoluzione di tale modello riguarda l’uso di tecniche di ricerca meta-euristiche in grado di trovare buone soluzioni in tempi contenuti, nonostante i grandi spazi di ricerca. Lavori precedenti hanno gia dimostrato l’applicabilità e investigato la metodologia su un singolo robot. Lo scopo di questo lavoro è quello di fornire prova di principio relativa a un insieme di robot, aprendo nuove strade per la progettazione in swarm robotics. In questo scenario, semplici agenti autonomi, interagendo fra loro, portano all’emergere di un comportamento coordinato adempiendo a task impossibili per la singola unità. Questo lavoro fornisce utili ed interessanti opportunità anche per lo studio delle interazioni fra reti booleane. Infatti, ogni robot è controllato da una rete booleana che determina l’output in funzione della propria configurazione interna ma anche dagli input ricevuti dai robot vicini. In questo lavoro definiamo un task in cui lo swarm deve discriminare due diversi pattern sul pavimento dell’arena utilizzando solo informazioni scambiate localmente. Dopo una prima serie di esperimenti preliminari che hanno permesso di identificare i parametri e il migliore algoritmo di ricerca, abbiamo semplificato l’istanza del problema per meglio investigare i criteri che possono influire sulle prestazioni. E’ stata così identificata una particolare combinazione di informazione che, scambiata localmente fra robot, porta al miglioramento delle prestazioni. L’ipotesi è stata confermata applicando successivamente questo risultato ad un’istanza più difficile del problema. Il lavoro si conclude suggerendo nuovi strumenti per lo studio dei fenomeni emergenti in contesti in cui le reti booleane interagiscono fra loro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gels are materials that are easier to recognize than to define. For all practical purpose, a material is termed a gel if the whole volume of liquid is completely immobilized as usually tested by the ‘tube inversion’ method. Recently, supramolecular gels obtained from low molecular weight gelators (LMWGs) have attracted considerable attention in materials science since they represent a new class of smart materials sensitive to external stimuli, such as temperature, ultrasounds, light, chemical species and so on. Accordingly, during the past years a large variety of potentialities and applications of these soft materials in optoelectronics, as electronic devices, light harvesting systems and sensors, in bio-materials and in drug delivery have been reported. Spontaneous self-assembly of low molecular weight molecules is a powerful tool that allows complex supramolecular nanoscale structures to be built. The weak and non-covalent interactions such as hydrogen bonding, π–π stacking, coordination, electrostatic and van der Waals interactions are usually considered as the most important features for promoting sol-gel equilibria. However, the occurrence of gelation processes is ruled by further “external” factors, among which the temperature and the nature of the solvents that are employed are of crucial importance. For example, some gelators prefer aromatic or halogenated solvents and in some cases both the gelation temperature and the type of the solvent affect the morphologies of the final aggregation. Functionalized cyclopentadienones are fascinating systems largely employed as building blocks for the synthesis of polyphenylene derivatives. In addition, it is worth noting that structures containing π-extended conjugated chromophores with enhanced absorption properties are of current interest in the field of materials science since they can be used as “organic metals”, as semiconductors, and as emissive or absorbing layers for OLEDs or photovoltaics. The possibility to decorate the framework of such structures prompted us to study the synthesis of new hydroxy propargyl arylcyclopentadienone derivatives. Considering the ability of such systems to give π–π stacking interactions, the introduction on a polyaromatic structure of polar substituents able to generate hydrogen bonding could open the possibility to form gels, although any gelation properties has been never observed for these extensively studied systems. we have synthesized a new class of 3,4-bis (4-(3-hydroxy- propynyl) phenyl) -2, 5-diphenylcyclopentadienone derivatives, one of which (1a) proved to be, for the first time, a powerful organogelator. The experimental results indicated that the hydroxydimethylalkynyl substituents are fundamental to guarantee the gelation properties of the tetraarylcyclopentadienone unit. Combining the results of FT-IR, 1H NMR, UV-vis and fluorescence emission spectra, we believe that H-bonding and π–π interactions are the driving forces played for the gel formation. The importance of soft materials lies on their ability to respond to external stimuli, that can be also of chemical nature. In particular, high attention has been recently devoted to anion responsive properties of gels. Therefore the behaviour of organogels of 1a in toluene, ACN and MeNO2 towards the addition of 1 equivalent of various tetrabutylammonium salts were investigated. The rheological properties of gels in toluene, ACN and MeNO2 with and without the addition of Bu4N+X- salts were measured. In addition a qualitative analysis on cation recognition was performed. Finally the nature of the cyclic core of the gelator was changed in order to verify how the carbonyl group was essential to gel solvents. Until now, 4,5-diarylimidazoles have been synthesized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo studio dell’intelligenza artificiale si pone come obiettivo la risoluzione di una classe di problemi che richiedono processi cognitivi difficilmente codificabili in un algoritmo per essere risolti. Il riconoscimento visivo di forme e figure, l’interpretazione di suoni, i giochi a conoscenza incompleta, fanno capo alla capacità umana di interpretare input parziali come se fossero completi, e di agire di conseguenza. Nel primo capitolo della presente tesi sarà costruito un semplice formalismo matematico per descrivere l’atto di compiere scelte. Il processo di “apprendimento” verrà descritto in termini della massimizzazione di una funzione di prestazione su di uno spazio di parametri per un ansatz di una funzione da uno spazio vettoriale ad un insieme finito e discreto di scelte, tramite un set di addestramento che descrive degli esempi di scelte corrette da riprodurre. Saranno analizzate, alla luce di questo formalismo, alcune delle più diffuse tecniche di artificial intelligence, e saranno evidenziate alcune problematiche derivanti dall’uso di queste tecniche. Nel secondo capitolo lo stesso formalismo verrà applicato ad una ridefinizione meno intuitiva ma più funzionale di funzione di prestazione che permetterà, per un ansatz lineare, la formulazione esplicita di un set di equazioni nelle componenti del vettore nello spazio dei parametri che individua il massimo assoluto della funzione di prestazione. La soluzione di questo set di equazioni sarà trattata grazie al teorema delle contrazioni. Una naturale generalizzazione polinomiale verrà inoltre mostrata. Nel terzo capitolo verranno studiati più nel dettaglio alcuni esempi a cui quanto ricavato nel secondo capitolo può essere applicato. Verrà introdotto il concetto di grado intrinseco di un problema. Verranno inoltre discusse alcuni accorgimenti prestazionali, quali l’eliminazione degli zeri, la precomputazione analitica, il fingerprinting e il riordino delle componenti per lo sviluppo parziale di prodotti scalari ad alta dimensionalità. Verranno infine introdotti i problemi a scelta unica, ossia quella classe di problemi per cui è possibile disporre di un set di addestramento solo per una scelta. Nel quarto capitolo verrà discusso più in dettaglio un esempio di applicazione nel campo della diagnostica medica per immagini, in particolare verrà trattato il problema della computer aided detection per il rilevamento di microcalcificazioni nelle mammografie.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il progetto Eye-Trauma si colloca all'interno dello sviluppo di un simulatore chirurgico per traumi alla zona oculare, sviluppato in collaborazione con Simulation Group in Boston, Harvard Medical School e Massachusetts General Hospital. Il simulatore presenta un busto in silicone fornito di moduli intercambiabili della zona oculare, per simulare diversi tipi di trauma. L'utilizzatore è chiamato ad eseguire la procedura medica di saturazione tramite degli strumenti chirurgici su cui sono installati dei sensori di forza e di apertura. I dati collezionati vengono utilizzati all'interno del software per il riconoscimento dei gesti e il controllo real-time della performance. L'algoritmo di gesture recognition, da me sviluppato, si basa sul concetto di macchine a stati; la transizione tra gli stati avviene in base agli eventi rilevati dal simulatore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.