4 resultados para Analysis and digital image processing
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Analisi strutturale dell’ala di un UAV (velivolo senza pilota a bordo), sviluppata usando varie metodologie: misurazioni sperimentali statiche e dinamiche, e simulazioni numeriche con l’utilizzo di programmi agli elementi finiti. L’analisi statica è stata a sua volta portata avanti seguendo due differenti metodi: la classica e diretta determinazione degli spostamenti mediante l’utilizzo di un catetometro e un metodo visivo, basato sull’elaborazione di immagini e sviluppato appositamente a tale scopo in ambiente Matlab. Oltre a ciò è stata svolta anche una analisi FEM volta a valutare l’errore che si ottiene affrontando il problema con uno studio numerico. Su tale modello FEM è stata svolta anche una analisi di tipo dinamico con lo scopo di confrontare tali dati con i dati derivanti da un test dinamico sperimentale per ottenere informazioni utili per una seguente possibile analisi aeroelastica.
Resumo:
The aim of TinyML is to bring the capability of Machine Learning to ultra-low-power devices, typically under a milliwatt, and with this it breaks the traditional power barrier that prevents the widely distributed machine intelligence. TinyML allows greater reactivity and privacy by conducting inference on the computer and near-sensor while avoiding the energy cost associated with wireless communication, which is far higher at this scale than that of computing. In addition, TinyML’s efficiency makes a class of smart, battery-powered, always-on applications that can revolutionize the collection and processing of data in real time. This emerging field, which is the end of a lot of innovation, is ready to speed up its growth in the coming years. In this thesis, we deploy three model on a microcontroller. For the model, datasets are retrieved from an online repository and are preprocessed as per our requirement. The model is then trained on the split of preprocessed data at its best to get the most accuracy out of it. Later the trained model is converted to C language to make it possible to deploy on the microcontroller. Finally, we take step towards incorporating the model into the microcontroller by implementing and evaluating an interface for the user to utilize the microcontroller’s sensors. In our thesis, we will have 4 chapters. The first will give us an introduction of TinyML. The second chapter will help setup the TinyML Environment. The third chapter will be about a major use of TinyML in Wake Word Detection. The final chapter will deal with Gesture Recognition in TinyML.
Resumo:
Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.
Resumo:
With the development of new technologies, Air Traffic Control, in the nearby of the airport, switched from a purely visual control to the use of radar, sensors and so on. As the industry is switching to the so-called Industry 4.0, also in this frame, it would be possible to implement some of the new tools that can facilitate the work of Air Traffic Controllers. The European Union proposed an innovative project to help the digitalization of the European Sky by means of the Single European Sky ATM Research (SESAR) program, which is the foundation on which the Single European Sky (SES) is based, in order to improve the already existing technologies to transform Air Traffic Management in Europe. Within this frame, the Resilient Synthetic Vision for Advanced Control Tower Air Navigation Service Provision (RETINA) project, which saw the light in 2016, studied the possibility to apply new tools within the conventional control tower to reduce the air traffic controller workload, thanks to the improvements in the augmented reality technologies. After the validation of RETINA, the Digital Technologies for Tower (DTT) project was established and the solution proposed by the University of Bologna aimed, among other things, to introduce Safety Nets in a Head-Up visualization. The aim of this thesis is to analyze the Safety Nets in use within the control tower and, by developing a working concept, implement them in a Head-Up view to be tested by Air Traffic Control Operators (ATCOs). The results, coming from the technical test, show that this concept is working and it could be leading to a future implementation in a real environment, as it improves the air traffic controller working conditions also when low visibility conditions apply.