5 resultados para Anaerobic corrosion
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Polycyclic aromatic hydrocarbons are chemicals produced by both human activities and natural sources and they have been present in the biosphere since millions of years. For this reason microorganisms should have developed, during the world history, the capacity of metabolized them under different electron acceptors and redox conditions. The deep understanding of these natural attenuation processes and of microbial degradation pathways has a main importance in the cleanup of contaminated areas. Anaerobic degradation of aromatic hydrocarbons is often presumed to be slow and of a minor ecological significance compared with the aerobic processes; however anaerobic bioremediation may play a key role in the transformation of organic pollutants when oxygen demand exceeds supply in natural environments. Under such conditions, anoxic and anaerobic degradation mediated by denitrifying or sulphate-reducing bacteria can become a key pathway for the contaminated lands clean up. Actually not much is known about anaerobic bioremediation processes. Anaerobic biodegrading techniques may be really interesting for the future, because they give the possibility of treating contaminated soil directly in their natural status, decreasing the costs concerning the oxygen supply, which usually are the highest ones, and about soil excavations and transports in appropriate sites for a further disposal. The aim of this dissertation work is to characterize the conditions favouring the anaerobic degradation of polycyclic aromatic hydrocarbons. Special focus will be given to the assessment of the various AEA efficiency, the characterization of degradation performance and rates under different redox conditions as well as toxicity monitoring. A comparison with aerobic and anaerobic degradation concerning the same contaminated material is also made to estimate the different biodegradation times.
Resumo:
The interactions between outdoor bronzes and the environment, which lead to bronze corrosion, require a better understanding in order to design effective conservation strategies in the Cultural Heritage field. In the present work, investigations on real patinas of the outdoor monument to Vittorio Bottego (Parma, Italy) and laboratory studies on accelerated corrosion testing of inhibited (by silane-based films, with and without ceria nanoparticles) and non-inhibited quaternary bronzes are reported and discussed. In particular, a wet&dry ageing method was used both for testing the efficiency of the inhibitor and for patinating bronze coupons before applying the inhibitor. A wide range of spectroscopic techniques has been used, for characterizing the core metal (SEM+EDS, XRF, AAS), the corroded surfaces (SEM+EDS, portable XRF, micro-Raman, ATR-IR, Py-GC-MS) and the ageing solutions (AAS). The main conclusions were: 1. The investigations on the Bottego monument confirmed the differentiation of the corrosion products as a function of the exposure geometry, already observed in previous works, further highlighting the need to take into account the different surface features when selecting conservation procedures such as the application of inhibitors (i.e. the relative Sn enrichment in unsheltered areas requires inhibitors which effectively interact not only with Cu but also with Sn). 2. The ageing (pre-patination) cycle on coupons was able to reproduce the relative Sn enrichment that actually happens in real patinated surfaces, making the bronze specimens representative of the real support for bronze inhibitors. 3. The non-toxic silane-based inhibitors display a good protective efficiency towards pre-patinated surfaces, differently from other widely used inhibitors such as benzotriazole (BTA) and its derivatives. 4. The 3-mercapto-propyl-trimethoxy-silane (PropS-SH) additivated with CeO2 nanoparticles generally offered a better corrosion protection than PropS-SH.
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
Deterioration phenomena occurring on outdoor cultural heritage have been the subject of several studies, but relatively few works investigated the specific role of Particulate Matter (PM) in the corrosion of metals. This topic is really complex and, besides field exposures, accelerated ageing tests are also necessary to isolate and understand deterioration mechanisms due to PM. For this reason, the development of a methodology that allows to reproduce and analyze the effect of PM on alloys through accelerated ageing in climatic chamber has been started. On quaternary bronze specimens, single salts and a mix of them were deposited via two deposition methods: dry (directly depositing the salt on the surface) and wet (dropping a salt solution and drying it), simulating the initial chemical activation of the salts by RH% variations or by raindrops, respectively. Then, to better mimic the composition of real PM, a mixture containing a soluble salts, a mineral, a black carbon and an organic fraction was formulated and spread on the samples. The samples were placed in a climatic chamber and exposed to cyclic variations of T and RH for three weeks. The ageing cycles were set according to predictions on salt deliquescence/recrystallization through E-AIM model and to the evaluation of regional climatic data. The surface evolution was followed by SEM-EDX, Raman, AT-IR and UV-Vis Spectrophotometry. At the end of the test, mass losses were determined and corroded metals removed by pickling were analyzed by AAS. On the basis of the obtained results, the tested procedures seem to be promising in accelerating and mimicking realistic corrosion phenomena, as under the selected conditions, corrosion products typically found at different exposure time (from days to years) on outdoor bronzes were able to progressively form and evolve. Moreover, the two deposition modes simulating different condition of chemical activation of PM deposits allow to obtain complementary information.