5 resultados para Allozymes,Cooper Creek, Fish, Genetic Structuring, Lake Eyre Basin, Microsatellites, Mitochondrial DNA, Warrego River

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypic plasticity refers to the ability of an organism to express different morphologies depending on the abiotic and biotic environment. Depth integrating many variables (e.g. temperature, light and hydrodynamics), may affect population structure and dynamics of the populations, as well as connectivity patterns and genetic diversity. Eunicella singularis is a Mediterranean arborescent gorgonian who plays an important rule as engineer species providing biomass and complexity to coralligenous habitats. It has a wide bathymetric distribution ranging from shallow rocky bottoms to deep sublittoral reefs. The species shows two depth-related morphotypes which taxonomic status is not yet clarified. The aim of the study is to analyses genetic variability and/or structuring along a vertical gradient to test the presence of the two morphotypes. Furthermore, a preliminary analyses of the phylogenetic relationship among species of the genus Eunicella has been done. Six populations of Eunicella singularis were sampled from 10 to 60 m depth in Cap de Creus and individuals belonging to Eunicella cavolinii, E. verrucosa, E. racemosa and E. stricta aphyta were collected. The genetic analyses were carried out using five microsatellite loci and ITS-1 sequence polymorphism. The results showed a reduction of genetic variability along the vertical gradient. A threshold in connectivity was observed across 30 - 40 m depth, confirming the presence of two different Eunicella singularis morphotypes. The two morphological forms could be due to phenotypic plasticity, which allowed populations to suit different environmental conditions, or to a break in gene flow that determined the isolation of the two populations and an accumulation of genetic differences. The molecular markers used were not able to clarify the phylogenetic relationship among Eunicella species and the systematic position of the two morphotypes, conversely they risen the question on the existence of single species of Mediterranean Eunicella.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Given the decline of shallow-water red coral populations resulting from over-exploitation and mass mortality events, deeper populations below 50 metres depth (mesophotic populations) are currently the most harvested; unfortunately, very little is known about their biology and ecology. The persistence of these populations is tightly linked to their adult density, reproductive success, larval dispersal and recruitment. Moreover, for their conservation, it is paramount understand processes such as connectivity within and among populations. Here, for the first time, genetic variability and structuring of Corallium rubrum populations collected in the Tyrrhenian Sea ranging from 58 to 118 metres were analyzed using ten microsatellite loci and two mitochondrial markers (mtMSH and MtC). The aims of the work were 1) to examine patterns of genetic diversity within each geographic area (Elba, Ischia and Praiano) and 2) to define population structuring at different spatial scales (from tens of metres to hundreds of kilometres). Based on microsatellite data set, significant deviations from Hardy-Weinberg equilibrium due to elevated heterozygote deficiencies were detected in all samples, probably related to the presence of null alleles and/or inbreeding, as was previously observed in shallow-water populations. Moreover, significant levels of genetic differentiation were observed at all spatial scale, suggesting a recent isolation of populations. Biological factors which act at small spatial scale and/or abiotic factors at larger scale (e.g. summer gyres or absence of suitable substrata for settlement) could determine this genetic isolation. Using mitochondrial markers, significant differences were found only at wider scale (between Tuscany and Campania regions). These results could be related to the different mutation rate of the molecular makers or to the occurrence of some historical links within regions. A significant isolation by distance pattern was then observed using both data sets, confirming the restricted larval dispersal capability of the species. Therefore, the hypothesis that deeper populations may act as a source of larvae helping recovery of threatened shallow-water populations is not proved. Conservation strategies have to take into account these results, and management plans of deep and currently harvested populations have to be defined at a regional or sub regional level, similarly to shallow-water populations. Nevertheless, further investigations should be needed to understand better the genetic structuring of this species in the mesophotic zone, e.g. extending studies to other Mediterranean deep-water populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blue shark, Prionace glauca, is one of the most vagile shark species worldwide distributed. The particular body shape allows blue sharks make transoceanic movements, leading to a circumglobal distribution. Due to its reproductive cycle, an extraordinarily high number of specimens is globally registered but, even if it is still a major bycatch of longline fishery rather than a commercial target, it is characterized by a high vulnerability. In this perspective it is important to increase the amount of informations regarding its population extent in the different worldwide areas, evaluating the possible phylogeographic patterns between different locations. This study, included in the "MedBlueSGen" European project, aims exactly at filling a gap in knowledges regarding the genetic population structure of the Mediterranean blue sharks, which has never been investigated before, with a comparison with the North-Eastern Atlantic blue shark population. To reach this objective, we used a dataset of samples from different Mediterranean areas implementing it with some samples from North-Eastern Atlantic. Analyzing the variability of the two mitochondrial markers control region and cytochrome b, with the design of new species-specific primer pairs, we assessed the mitochondrial genetic structure of Mediterranean and North-Eastern Atlantic samples, focusing on the analysis of their possible connectivity, and we tried to reconstruct their demographic history and population size. Data analyses highlighted the absence of a genetic structuring within the Mediterranean and among it and North-Eastern Atlantic, suggesting that the Strait of Gibraltar doesn't represent a phylogeographic barrier. These results are coherent to what has been found in similar investigations on other worldwide blue shark populations. Analysis of the historical demographic trend revealed a general stable pattern for the cytochrome-b and a slightly population expansion for the control region marker.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study poses as its objective the genetic characterization of the ancient population of the Great White shark, Carcharodon carcharias, L.1758, present in the Mediterranean Sea. Using historical evidence, for the most part buccal arches but also whole, stuffed examples from various national museums, research institutes and private collections, a dataset of 18 examples coming from the Mediterranean Sea has been created, in order to increase the informations regarding this species in the Mediterranean. The importance of the Mediterranean provenance derives from the fact that a genetic characterization of this species' population does not exist, and this creates gaps in the knowledge of this species in the Mediterranean. The genetic characterization of the individuals will initially take place by the extraction of the ancient DNA and the analysis of the variations in the sequence markers of the mitochondrial DNA. This approach has allowed the genetic comparison between ancient populations of the Mediterranean and contemporary populations of the same geographical area. In addition, the genetic characterization of the population of white sharks of the Mediterranean, has allowed a genetic comparison with populations from global "hot spots", using published sequences in online databases (NCBI, GenBank). Analyzing the variability of the dataset, both in terms space and time, I assessed the evolutionary relationships of the Mediterranean population of Great Whites with the global populations (Australia/New Zealand, South Africa, Pacific USA, West Atlantic), and the temporal trend of the Mediterranean population variability. This method based on the sequencing of two portions of mitochondrial DNA genes, markers showed us how the population of Great White Sharks in the Mediterranean, is genetically more similar to the populations of the Australia Pacific ocean, American Pacific Ocean, rather than the population of South Africa, and showing also how the population of South Africa is abnormally distant from all other clusters. Interestingly, these results are inconsistent with the results from tagging of this species. In addition, there is evidence of differences between the ancient population of the Mediterranean with the modern one. This differentiation between the ancient and modern population of white shark can be the result of events impacting on this species occurred over the last two centuries.